PortAudio.jl/src/nodes.jl
2014-08-28 17:05:15 -04:00

342 lines
9.3 KiB
Julia

#### NullNode ####
type NullRenderer <: AudioRenderer end
typealias NullNode AudioNode{NullRenderer}
export NullNode
function render(node::NullRenderer, device_input::AudioBuf, info::DeviceInfo)
# TODO: preallocate buffer
return zeros(info.buf_size)
end
#### SinOsc ####
# Generates a sin tone at the given frequency
type SinOscRenderer{T<:Union(Float32, AudioNode)} <: AudioRenderer
freq::T
phase::Float32
buf::AudioBuf
function SinOscRenderer(freq)
new(freq, 0.0, AudioSample[])
end
end
typealias SinOsc AudioNode{SinOscRenderer}
SinOsc(freq::Real) = SinOsc(SinOscRenderer{Float32}(freq))
SinOsc(freq::AudioNode) = SinOsc(SinOscRenderer{AudioNode}(freq))
SinOsc() = SinOsc(440)
export SinOsc
function render(node::SinOscRenderer{Float32}, device_input::AudioBuf,
info::DeviceInfo)
if length(node.buf) != info.buf_size
resize!(node.buf, info.buf_size)
end
outbuf = node.buf
phase = node.phase
freq = node.freq
# make sure these are Float32s so that we don't allocate doing conversions
# in the tight loop
pi2::Float32 = 2pi
phase_inc::Float32 = 2pi * freq / info.sample_rate
i::Int = 1
while i <= info.buf_size
outbuf[i] = sin(phase)
phase = (phase + phase_inc) % pi2
i += 1
end
node.phase = phase
return outbuf
end
function render(node::SinOscRenderer{AudioNode}, device_input::AudioBuf,
info::DeviceInfo)
freq = render(node.freq, device_input, info)::AudioBuf
block_size = min(length(freq), info.buf_size)
if(length(node.buf) != block_size)
resize!(node.buf, block_size)
end
outbuf = node.buf
phase::Float32 = node.phase
pi2::Float32 = 2pi
phase_step::Float32 = 2pi/(info.sample_rate)
i::Int = 1
while i <= block_size
outbuf[i] = sin(phase)
phase = (phase + phase_step*freq[i]) % pi2
i += 1
end
node.phase = phase
return outbuf
end
#### AudioMixer ####
# Mixes a set of inputs equally
type MixRenderer <: AudioRenderer
inputs::Vector{AudioNode}
buf::AudioBuf
MixRenderer(inputs) = new(inputs, AudioSample[])
MixRenderer() = MixRenderer(AudioNode[])
end
typealias AudioMixer AudioNode{MixRenderer}
export AudioMixer
function render(node::MixRenderer, device_input::AudioBuf, info::DeviceInfo)
if length(node.buf) != info.buf_size
resize!(node.buf, info.buf_size)
end
mix_buffer = node.buf
n_inputs = length(node.inputs)
i = 1
max_samples = 0
fill!(mix_buffer, 0)
while i <= n_inputs
rendered = render(node.inputs[i], device_input, info)::AudioBuf
nsamples = length(rendered)
max_samples = max(max_samples, nsamples)
j::Int = 1
while j <= nsamples
mix_buffer[j] += rendered[j]
j += 1
end
if nsamples < info.buf_size
deleteat!(node.inputs, i)
n_inputs -= 1
else
i += 1
end
end
if max_samples < length(mix_buffer)
return mix_buffer[1:max_samples]
else
# save the allocate and copy if we don't need to
return mix_buffer
end
end
Base.push!(mixer::AudioMixer, node::AudioNode) = push!(mixer.renderer.inputs, node)
#### Gain ####
type GainRenderer{T<:Union(Float32, AudioNode)} <: AudioRenderer
in1::AudioNode
in2::T
buf::AudioBuf
GainRenderer(in1, in2) = new(in1, in2, AudioSample[])
end
function render(node::GainRenderer{Float32},
device_input::AudioBuf,
info::DeviceInfo)
input = render(node.in1, device_input, info)::AudioBuf
if length(node.buf) != length(input)
resize!(node.buf, length(input))
end
i = 1
while i <= length(input)
node.buf[i] = input[i] * node.in2
i += 1
end
return node.buf
end
function render(node::GainRenderer{AudioNode},
device_input::AudioBuf,
info::DeviceInfo)
in1_data = render(node.in1, device_input, info)::AudioBuf
in2_data = render(node.in2, device_input, info)::AudioBuf
block_size = min(length(in1_data), length(in2_data))
if length(node.buf) != block_size
resize!(node.buf, block_size)
end
i = 1
while i <= block_size
node.buf[i] = in1_data[i] * in2_data[i]
i += 1
end
return node.buf
end
typealias Gain AudioNode{GainRenderer}
Gain(in1::AudioNode, in2::Real) = Gain(GainRenderer{Float32}(in1, in2))
Gain(in1::AudioNode, in2::AudioNode) = Gain(GainRenderer{AudioNode}(in1, in2))
export Gain
#### Offset ####
type OffsetRenderer <: AudioRenderer
in_node::AudioNode
offset::Float32
buf::AudioBuf
OffsetRenderer(in_node, offset) = new(in_node, offset, AudioSample[])
end
function render(node::OffsetRenderer, device_input::AudioBuf, info::DeviceInfo)
input = render(node.in_node, device_input, info)::AudioBuf
if length(node.buf) != length(input)
resize!(node.buf, length(input))
end
i = 1
while i <= length(input)
node.buf[i] = input[i] + node.offset
i += 1
end
return node.buf
end
typealias Offset AudioNode{OffsetRenderer}
export Offset
#### Array Player ####
# Plays a AudioBuf by rendering it out piece-by-piece
type ArrayRenderer <: AudioRenderer
arr::AudioBuf
arr_index::Int
buf::AudioBuf
ArrayRenderer(arr::AudioBuf) = new(arr, 1, AudioSample[])
end
typealias ArrayPlayer AudioNode{ArrayRenderer}
export ArrayPlayer
function render(node::ArrayRenderer, device_input::AudioBuf, info::DeviceInfo)
range_end = min(node.arr_index + info.buf_size-1, length(node.arr))
block_size = range_end - node.arr_index + 1
if length(node.buf) != block_size
resize!(node.buf, block_size)
end
copy!(node.buf, 1, node.arr, node.arr_index, block_size)
node.arr_index = range_end + 1
return node.buf
end
# Allow users to play a raw array by wrapping it in an ArrayPlayer
function play(arr::AudioBuf, args...)
player = ArrayPlayer(arr)
play(player, args...)
end
# If the array is the wrong floating type, convert it
function play{T <: FloatingPoint}(arr::Array{T}, args...)
arr = convert(AudioBuf, arr)
play(arr, args...)
end
# If the array is an integer type, scale to [-1, 1] floating point
# integer audio can be slightly (by 1) more negative than positive,
# so we just scale so that +/- typemax(T) becomes +/- 1
function play{T <: Signed}(arr::Array{T}, args...)
arr = arr / typemax(T)
play(arr, args...)
end
function play{T <: Unsigned}(arr::Array{T}, args...)
zero = (typemax(T) + 1) / 2
range = floor(typemax(T) / 2)
arr = (arr .- zero) / range
play(arr, args...)
end
#### Noise ####
type WhiteNoiseRenderer <: AudioRenderer end
typealias WhiteNoise AudioNode{WhiteNoiseRenderer}
export WhiteNoise
function render(node::WhiteNoiseRenderer, device_input::AudioBuf, info::DeviceInfo)
return rand(AudioSample, info.buf_size) .* 2 .- 1
end
#### AudioInput ####
# Renders incoming audio input from the hardware
type InputRenderer <: AudioRenderer
channel::Int
InputRenderer(channel::Integer) = new(channel)
InputRenderer() = new(1)
end
function render(node::InputRenderer, device_input::AudioBuf, info::DeviceInfo)
@assert size(device_input, 1) == info.buf_size
return device_input[:, node.channel]
end
typealias AudioInput AudioNode{InputRenderer}
export AudioInput
#### LinRamp ####
type LinRampRenderer <: AudioRenderer
key_samples::Array{AudioSample}
key_durations::Array{Float32}
duration::Float32
buf::AudioBuf
LinRampRenderer(start, finish, dur) = LinRampRenderer([start,finish], [dur])
LinRampRenderer(key_samples, key_durations) =
LinRampRenderer(
[convert(AudioSample,s) for s in key_samples],
[convert(Float32,d) for d in key_durations]
)
function LinRampRenderer(key_samples::Array{AudioSample}, key_durations::Array{Float32})
@assert length(key_samples) == length(key_durations) + 1
new(key_samples, key_durations, sum(key_durations), AudioSample[])
end
end
typealias LinRamp AudioNode{LinRampRenderer}
export LinRamp
function render(node::LinRampRenderer, device_input::AudioBuf, info::DeviceInfo)
# Resize buffer if (1) it's too small or (2) we've hit the end of the ramp
ramp_samples::Int = int(node.duration * info.sample_rate)
block_samples = min(ramp_samples, info.buf_size)
if length(node.buf) != block_samples
resize!(node.buf, block_samples)
end
# Fill the buffer as long as there are more segments
dt::Float32 = 1/info.sample_rate
i::Int = 1
while i <= length(node.buf) && length(node.key_samples) > 1
# Fill as much of the buffer as we can with the current segment
ds::Float32 = (node.key_samples[2] - node.key_samples[1]) / node.key_durations[1] / info.sample_rate
while i <= length(node.buf)
node.buf[i] = node.key_samples[1]
node.key_samples[1] += ds
node.key_durations[1] -= dt
node.duration -= dt
i += 1
# Discard segment if we're finished
if node.key_durations[1] <= 0
if length(node.key_durations) > 1
node.key_durations[2] -= node.key_durations[1]
end
shift!(node.key_samples)
shift!(node.key_durations)
break
end
end
end
return node.buf
end