RoomAcoustics.jl/src/TxRxModels.jl

300 lines
9.1 KiB
Julia
Raw Normal View History

module TxRxModels
using LinearAlgebra
using StaticArrays
export directivity_pattern,
CardioidFamilyPattern,
Omnidirectional,
Subcardioid,
Cardioid,
Hypercardioid,
Bidirectional
export TxRx, TxRxArray
export uniform_circle, fibonacci_sphere
export linear_array, circular_array, fibonacci_array, physical_array
abstract type AbstractDirectivityPattern end
struct OmnidirectionalPattern <: AbstractDirectivityPattern end
struct SubcardioidPattern <: AbstractDirectivityPattern end
struct CardioidPattern <: AbstractDirectivityPattern end
struct HypercardioidPattern <: AbstractDirectivityPattern end
struct BidirectionalPattern <: AbstractDirectivityPattern end
struct CardioidFamilyPattern{T<:Real} <: AbstractDirectivityPattern
ρ::T
function CardioidFamilyPattern(ρ::T) where {T<:Real}
ρ < 0.0 && ρ > 1.0 && error("argument out of range, 0.0 ≤", ρ, " ≤ 1.0")
new{T}(ρ)
end
end
const Omnidirectional = OmnidirectionalPattern()
const Subcardioid = SubcardioidPattern()
const Cardioid = CardioidPattern()
const Hypercardioid = HypercardioidPattern()
const Bidirectional = BidirectionalPattern()
abstract type AbstractTxRx end
struct TxRx{T<:Real, D<:AbstractDirectivityPattern} <: AbstractTxRx
position::SVector{3, T} # Position
B::SMatrix{3, 3, T} # Orientation
directivity::D # Directivity pattern
noise::T # Noise floor [dB]
end
function TxRx(
position,
orientation=SMatrix{3,3}(1.0I),
directivity_pattern=Omnidirectional,
noise = -Inf
)
position = position |> SVector{3}
orientation = orientation |> SMatrix{3, 3}
TxRx(position, orientation, directivity_pattern, noise)
end
struct TxRxArray{T<:Real} <: AbstractTxRx
txrx::Vector{<:TxRx{T}} # list of TxRxes in the local frame
origin::SVector{3, T} # Position of the local origin in reference to the global origin
B::SMatrix{3, 3, T} # Orientation of the array (local -> global)
end
function TxRxArray(
txrx,
origin=SVector{3}([0., 0., 0.]),
orientation=SMatrix{3,3}(1.0I)
)
origin = origin |> SVector{3}
TxRxArray(txrx, origin, orientation)
end
"""
"""
function cardioid_pattern(
d::SVector{3, <:Real},
B::SMatrix{3, 3, <:Real},
ρ::Real,
)::Real
r = [1., 0., 0.]
ρ + (1-ρ) * r' * B' * d
end
"""
"""
function directivity_pattern(
d::SVector{3, <:Real},
txrx::TxRx,
)::Real
directivity_pattern(d, txrx.B, txrx.directivity)
end
"""
"""
function directivity_pattern(
d::SVector{3, <:Real},
B::SMatrix{3, 3, <:Real},
dp::CardioidFamilyPattern,
)::Real
cardioid_pattern(d, B, dp.ρ)
end
"""
"""
function directivity_pattern(
d::SVector{3, <:Real},
B::SMatrix{3, 3, <:Real},
::OmnidirectionalPattern,
)::Real
1
end
"""
"""
function directivity_pattern(
d::SVector{3, <:Real},
B::SMatrix{3, 3, <:Real},
::SubcardioidPattern,
)::Real
cardioid_pattern(d, B, 0.75)
end
"""
"""
function directivity_pattern(
d::SVector{3, <:Real},
B::SMatrix{3, 3, <:Real},
::CardioidPattern,
)::Real
cardioid_pattern(d, B, 0.50)
end
"""
"""
function directivity_pattern(
d::SVector{3, <:Real},
B::SMatrix{3, 3, <:Real},
::HypercardioidPattern,
)::Real
cardioid_pattern(d, B, 0.25)
end
"""
"""
function directivity_pattern(
d::SVector{3, <:Real},
B::SMatrix{3, 3, <:Real},
::BidirectionalPattern,
)::Real
cardioid_pattern(d, B, 0.00)
end
function uniform_circle(N::Integer)
Δα = 2π / N
[SVector{3}([cos(α), sin(α), 0]) for α 0:Δα:2π-Δα]
end
function fibonacci_sphere(N::Integer)
function f(i, offset, up, N)
y = i * offset - 1 + offset / 2
r = sqrt(1 - y^2)
ϕ = ((i + 1.0) % N) * up
x = cos(ϕ) * r
z = sin(ϕ) * r
return SVector{3}([x, y, z])
end
offset = 2.0 / N
up = π * (3.0 - 5.0)
[f(i, offset, up, N) for i = 0:N-1]
end
function linear_array(N::Integer, L::Real)
ΔL = L / (N - 1)
L2 = L / 2
[SVector{3}([x - L2, 0, 0]) for x 0.00:ΔL:(N-1)*ΔL]
end
function circular_array(N::Integer, r::Real)
Δα = 2π / N
[SVector{3}([r * cos(α), r * sin(α), 0]) for α 0:Δα:2π-Δα]
end
function fibonacci_array(N::Integer, r::Real)
P = fibonacci_sphere(N)
[SVector{3}(r .* p) for p in P]
end
physical_array = (
matrix_voice = (
cartesian = [
SVector{3}([+0.00000, +0.00000, +0.00000]),
SVector{3}([-0.03813, +0.00358, +0.00000]),
SVector{3}([-0.02098, +0.03204, +0.00000]),
SVector{3}([+0.01197, +0.03638, +0.00000]),
SVector{3}([+0.03591, +0.01332, +0.00000]),
SVector{3}([+0.03281, -0.01977, +0.00000]),
SVector{3}([+0.00500, -0.03797, +0.00000]),
SVector{3}([-0.02657, -0.02758, +0.00000]),
],
),
respeaker_6mic = (
cartesian = (
SVector{3}([-0.02320, +0.04010, +0.00000]),
SVector{3}([-0.04630, +0.00000, +0.00000]),
SVector{3}([-0.02320, -0.04010, +0.00000]),
SVector{3}([+0.02320, -0.04010, +0.00000]),
SVector{3}([+0.04630, +0.00000, +0.00000]),
SVector{3}([+0.02320, +0.04010, +0.00000]),
),
),
em32 = let
r = 0.042
sph = [ # source: https://mhacoustics.com/sites/default/files/EigenmikeReleaseNotesV18.pdf
# r, θ φ
SVector{3}([r, 69, 0]), # Channel 01
SVector{3}([r, 90, 32]), # Channel 02
SVector{3}([r, 111, 0]), # Channel 03
SVector{3}([r, 90, 328]), # Channel 04
SVector{3}([r, 32, 0]), # Channel 05
SVector{3}([r, 55, 45]), # Channel 06
SVector{3}([r, 90, 69]), # Channel 07
SVector{3}([r, 125, 45]), # Channel 08
SVector{3}([r, 148, 0]), # Channel 09
SVector{3}([r, 125, 315]), # Channel 10
SVector{3}([r, 90, 291]), # Channel 11
SVector{3}([r, 55, 315]), # Channel 12
SVector{3}([r, 21, 91]), # Channel 13
SVector{3}([r, 58, 90]), # Channel 14
SVector{3}([r, 121, 90]), # Channel 15
SVector{3}([r, 159, 89]), # Channel 16
SVector{3}([r, 69, 180]), # Channel 17
SVector{3}([r, 90, 212]), # Channel 18
SVector{3}([r, 111, 180]), # Channel 19
SVector{3}([r, 90, 148]), # Channel 20
SVector{3}([r, 32, 180]), # Channel 21
SVector{3}([r, 55, 225]), # Channel 22
SVector{3}([r, 90, 249]), # Channel 23
SVector{3}([r, 125, 225]), # Channel 24
SVector{3}([r, 148, 180]), # Channel 25
SVector{3}([r, 125, 135]), # Channel 26
SVector{3}([r, 90, 111]), # Channel 27
SVector{3}([r, 55, 135]), # Channel 28
SVector{3}([r, 21, 269]), # Channel 29
SVector{3}([r, 58, 270]), # Channel 30
SVector{3}([r, 122, 270]), # Channel 31
SVector{3}([r, 159, 271]), # Channel 32
];
d2r((r, θ, φ)) = (r, θ*π/180., φ*π/180.)
s2c((r, θ, φ)) = (r*sin(θ)*cos(φ), r*sin(θ)*sin(φ), r*cos(θ))
(cartesian = sph .|> d2r .|> s2c, spherical = sph)
end,
zylia_zm1 = let
r = 0.049
sph = [ # Source: SPARTA Array2SH v1.6.8 plug-in
SVector{3}([r, +0.0000000000000000, +90.00000000000000]), # Channel 01
SVector{3}([r, +0.1752158999443054, +48.14300537109375]), # Channel 02
SVector{3}([r, +120.09252166748050, +48.13568878173828]), # Channel 03
SVector{3}([r, -119.94072723388670, +48.17926788330078]), # Channel 04
SVector{3}([r, -82.167846679687500, +19.42138671875000]), # Channel 05
SVector{3}([r, -37.613956451416020, +19.43202972412109]), # Channel 06
SVector{3}([r, +37.885848999023440, +19.41517066955566]), # Channel 07
SVector{3}([r, +82.290664672851560, +19.42664337158203]), # Channel 08
SVector{3}([r, +157.87617492675780, +19.43287277221680]), # Channel 09
SVector{3}([r, -157.59960937500000, +19.43940162658691]), # Channel 10
SVector{3}([r, -142.11413574218750, -19.41517066955566]), # Channel 11
SVector{3}([r, -97.709327697753910, -19.42664337158203]), # Channel 12
SVector{3}([r, -22.123807907104490, -19.43287277221680]), # Channel 13
SVector{3}([r, +22.400377273559570, -19.43940162658691]), # Channel 14
SVector{3}([r, +97.832138061523440, -19.42138671875000]), # Channel 15
SVector{3}([r, +142.38603210449220, -19.43202972412109]), # Channel 16
SVector{3}([r, -179.82476806640620, -48.14300537109375]), # Channel 17
SVector{3}([r, -59.907478332519530, -48.13568878173828]), # Channel 18
SVector{3}([r, +60.059268951416020, -48.17926788330078]), # Channel 19
];
d2r((r, θ, φ)) = SVector{3}([r, (θ+180)*π/180., (φ-90)*π/180.])
s2c((r, φ, θ)) = SVector{3}([r*sin(θ)*cos(φ), r*sin(θ)*sin(φ), r*cos(θ)])
(cartesian = sph .|> d2r .|> s2c, spherical = sph)
end
);
end # module TxRxModels