source directivity for ISM rect core
This commit is contained in:
parent
38ed515170
commit
69709042f6
6 changed files with 152 additions and 131 deletions
|
@ -4,7 +4,7 @@
|
|||
|
||||
|
||||
```julia
|
||||
] add https://git.sr.ht/~zymon/RoomAcoustics.jl
|
||||
] add https://codeberg.org/zymon/RoomAcoustics.jl
|
||||
```
|
||||
|
||||
|
||||
|
|
104
src/ISM.jl
104
src/ISM.jl
|
@ -2,11 +2,11 @@ export ISM
|
|||
|
||||
function ISM(
|
||||
tx::TxRx,
|
||||
array::TxRxArray,
|
||||
rx_array::TxRxArray,
|
||||
room::AbstractRoom,
|
||||
config::ISMConfig;
|
||||
)
|
||||
rxs, origin, B = array.txrx, array.origin, array.B
|
||||
rxs, origin, B = rx_array.txrx, rx_array.origin, rx_array.B
|
||||
l2g = rx -> TxRx(B * rx.position + origin, B * rx.B, rx.directivity)
|
||||
[ISM(tx, rx |> l2g, room, config) for rx in rxs]
|
||||
end
|
||||
|
@ -38,9 +38,11 @@ function ISM(
|
|||
)
|
||||
h = ISM_RectangularRoom_core(
|
||||
tx.position, # transmitter position
|
||||
tx.directivity, # transmitter directivity pattern
|
||||
tx.B, # transmitter orientation
|
||||
rx.position, # receiver position
|
||||
rx.B, # receiver orientation
|
||||
rx.directivity, # receiver directivity pattern
|
||||
rx.B, # receiver orientation
|
||||
room.L, # room size
|
||||
room.β, # reflection coefficients
|
||||
room.c, # velocity of the sound
|
||||
|
@ -68,31 +70,34 @@ end
|
|||
|
||||
"""
|
||||
function ISM_RectangularRoom_core(
|
||||
tx::SVector{3,T}, # transmitter position
|
||||
rx::SVector{3,T}, # reveiver position
|
||||
B::SMatrix{3,3,T}, # receiver orientation
|
||||
dp::AbstractDirectivityPattern, # Receiver directivity pattern
|
||||
tx_p::SVector{3,T}, # transmitter position
|
||||
tx_dp::AbstractDirectivityPattern, # transmitter directivity pattern
|
||||
tx_B::SMatrix{3,3,T}, # receiver orientation
|
||||
rx_p::SVector{3,T}, # reveiver position
|
||||
rx_dp::AbstractDirectivityPattern, # receiver directivity pattern
|
||||
rx_B::SMatrix{3,3,T}, # receiver orientation
|
||||
L::Tuple{T,T,T}, # room size (Lx, Ly, Lz)
|
||||
β::Tuple{T,T,T,T,T,T}, # Reflection coefficients (βx1, βx2, βy1, βy2, βz1, βz2)
|
||||
β::Tuple{T,T,T,T,T,T}, # reflection coefficients (βx1, βx2, βy1, βy2, βz1, βz2)
|
||||
c::T, # velocity of the wave
|
||||
fs::T, # sampling frequeyncy
|
||||
order::Tuple{<:Int,<:Int}, # order of reflections; min max
|
||||
Nh::Integer, # h lenght in samples
|
||||
Wd::T, # Window width
|
||||
ISD::T, # Random displacement of image source
|
||||
order::Tuple{I,I}, # order of reflections; (min, max)
|
||||
Nh::Integer, # number of returned samples
|
||||
Wd::T, # window width
|
||||
ISD::T, # random displacement of image source
|
||||
lrng::AbstractRNG # random number generator
|
||||
)::AbstractVector{T} where {T<:AbstractFloat}
|
||||
|
||||
)::AbstractVector{T} where {T<:AbstractFloat, I<:Integer}
|
||||
# Allocate memory for the impulose response
|
||||
h = zeros(T, Nh)
|
||||
|
||||
# Call
|
||||
ISM_RectangularRoom_core!(
|
||||
h, # Container for impulse response
|
||||
tx, # transmitter position
|
||||
rx, # receiver position
|
||||
B, # receiver orientation
|
||||
dp, # receiver directivity pattern
|
||||
h, # container for impulse response
|
||||
tx_p, # transmitter position
|
||||
tx_dp, # transmitter directivity pattern
|
||||
tx_B, # transmitter orientation
|
||||
rx_p, # receiver position
|
||||
rx_dp, # receiver directivity pattern
|
||||
rx_B, # receiver orientation
|
||||
L, # room size
|
||||
β, # reflection coefficients
|
||||
c, # velocity of the sound
|
||||
|
@ -102,28 +107,34 @@ function ISM_RectangularRoom_core(
|
|||
ISD, # random image source displacement
|
||||
lrng, # Local random number generator
|
||||
)
|
||||
|
||||
return h
|
||||
h
|
||||
end
|
||||
|
||||
"""
|
||||
|
||||
References:
|
||||
[1] J. B. Allen and D. A. Berkley, “Image method for efficiently simulating small‐room acoustics,” The Journal of the Acoustical Society of America, vol. 65, no. 4, Art. no. 4, Apr. 1979, doi: 10.1121/1.382599.
|
||||
[2] P. M. Peterson, “Simulating the response of multiple microphones to a single acoustic source in a reverberant room,” The Journal of the Acoustical Society of America, vol. 80, no. 5, Art. no. 5, Nov. 1986, doi: 10.1121/1.394357.
|
||||
[3] E. De Sena, N. Antonello, M. Moonen, and T. van Waterschoot, “On the Modeling of Rectangular Geometries in Room Acoustic Simulations,” IEEE/ACM Transactions on Audio, Speech, and Language Processing, vol. 23, no. 4, Art. no. 4, Apr. 2015, doi: 10.1109/TASLP.2015.2405476.
|
||||
[4] F. Brinkmann, V. Erbes, and S. Weinzierl, “Extending the closed form image source model for source directivity,” presented at the DAGA 2018, Munich, Germany, Mar. 2018.
|
||||
"""
|
||||
function ISM_RectangularRoom_core!(
|
||||
h::AbstractVector{<:T},
|
||||
tx::SVector{3,T}, # transmitter position
|
||||
rx::SVector{3,T}, # reveiver position
|
||||
B::SMatrix{3,3,T}, # receiver orientation
|
||||
dp::AbstractDirectivityPattern, # Receiver directivity pattern
|
||||
tx_p::SVector{3,T}, # transmitter position
|
||||
tx_dp::AbstractDirectivityPattern, # transmitter directivity pattern
|
||||
tx_B::SMatrix{3,3,T}, # receiver orientation
|
||||
rx_p::SVector{3,T}, # reveiver position
|
||||
rx_dp::AbstractDirectivityPattern, # receiver directivity pattern
|
||||
rx_B::SMatrix{3,3,T}, # receiver orientation
|
||||
L::Tuple{T,T,T}, # room size (Lx, Ly, Lz)
|
||||
β::Tuple{T,T,T,T,T,T}, # Reflection coefficients (βx1, βx2, βy1, βy2, βz1, βz2)
|
||||
c::T, # velocity of the wave
|
||||
fs::T, # sampling frequeyncy
|
||||
order::Tuple{<:Int,<:Int}, # order of reflections; min max
|
||||
order::Tuple{I,I}, # order of reflections; min max
|
||||
Wd::T, # Window width
|
||||
ISD::T, # Random displacement of image source
|
||||
lrng::AbstractRNG # random number generator
|
||||
)::AbstractVector{T} where {T<:AbstractFloat}
|
||||
lrng::AbstractRNG; # random number generator
|
||||
) where {T<:AbstractFloat, I<:Integer}
|
||||
|
||||
# Number of samples in impulose response
|
||||
Nh = length(h)
|
||||
|
@ -141,9 +152,10 @@ function ISM_RectangularRoom_core!(
|
|||
|
||||
# Allocate memory
|
||||
rd = @MVector zeros(T, 3) # Container for random displacement
|
||||
tx_isp = @MVector zeros(T, 3) # Container for relative image source position
|
||||
isp = @MVector zeros(T, 3) # Container for relative image source position
|
||||
b = @MVector zeros(T, 6) # Container for effective reflection coefficient
|
||||
DoA = @MVector zeros(T, 3) # Container for direction of incoming ray to receiver
|
||||
rx_DoA = @MVector zeros(T, 3) # Container for direction of incoming ray to receiver
|
||||
tx_DoA = @MVector zeros(T, 3) # Container for direction of ray coming out from transmitter
|
||||
Rp = @MVector zeros(T, 3) #
|
||||
|
||||
# Main loop
|
||||
|
@ -159,37 +171,44 @@ function ISM_RectangularRoom_core!(
|
|||
if o_min <= o && (o <= o_max || o_max == -1)
|
||||
# Compute Rp part
|
||||
for i = 1:3
|
||||
Rp[i] = (1 .- 2 * p[i]) * tx[i] - rx[i]
|
||||
Rp[i] = (1 .- 2 * p[i]) * tx_p[i] - rx_p[i]
|
||||
end
|
||||
|
||||
# Position of [randomized] image source for given permutation
|
||||
tx_isp .= Rp .+ Rr
|
||||
# image source position for given permutation
|
||||
isp .= Rp .+ Rr
|
||||
|
||||
if ISD > 0.0 && o > 0
|
||||
# Generate random displacement for the image source
|
||||
# generate random displacement for the image source
|
||||
randn!(lrng, rd)
|
||||
tx_isp .+= rd .* ISD
|
||||
isp .+= rd .* ISD
|
||||
end
|
||||
|
||||
# Distance between receiver and image source
|
||||
dist = norm(tx_isp)
|
||||
d = norm(isp)
|
||||
|
||||
# Propagation time between receiver and image source
|
||||
τ = dist / c
|
||||
τ = d / c
|
||||
|
||||
if τ <= Nh / fs # Check if it still in transfer function range
|
||||
if τ <= Nh / fs # Check if it still in transfer function rangΩ
|
||||
|
||||
# Compute value of reflection coefficients
|
||||
b .= β .^ abs.((n - q, n, l - j, l, m - k, m))
|
||||
|
||||
# Direction of Arrival of ray
|
||||
DoA .= tx_isp ./ dist
|
||||
# Direction of Arrival of ray incoming from image source to receiver
|
||||
rx_DoA .= isp ./ d
|
||||
|
||||
# Compute receiver directivity gain
|
||||
DG = directivity_pattern(SVector{3}(DoA), B, dp)
|
||||
rx_DG = directivity_pattern(SVector{3}(rx_DoA), rx_B, rx_dp)
|
||||
|
||||
# Direction of Arrival of ray coming out from transmitter to wall
|
||||
perm = (abs(n - q) + abs(n), abs(l - j) + abs(l), abs(m - k) + abs(m))
|
||||
tx_DoA .= -rx_DoA .* (-1, -1, -1).^perm
|
||||
|
||||
# Compute transmitter directivity gain
|
||||
tx_DG = directivity_pattern(SVector{3}(tx_DoA), tx_B, tx_dp)
|
||||
|
||||
# Compute attenuation coefficient
|
||||
A = DG * prod(b) / (4π * dist)
|
||||
A = tx_DG * rx_DG * prod(b) / (4π * d)
|
||||
|
||||
# Compute range of samples in transfer function
|
||||
i_s = max(ceil(Int, (τ - Wd / 2) * fs) + 1, 1) # start
|
||||
|
@ -206,5 +225,4 @@ function ISM_RectangularRoom_core!(
|
|||
end
|
||||
end
|
||||
end
|
||||
h
|
||||
end
|
||||
|
|
|
@ -3,10 +3,12 @@ module RoomAcoustics
|
|||
using LinearAlgebra
|
||||
using StaticArrays
|
||||
using Statistics
|
||||
using DSP
|
||||
using Random
|
||||
using Random: GLOBAL_RNG
|
||||
|
||||
using LoopVectorization
|
||||
using DSP: conv
|
||||
|
||||
using TxRxModels
|
||||
using TxRxModels: AbstractDirectivityPattern
|
||||
|
||||
|
@ -15,7 +17,6 @@ include("utils.jl")
|
|||
include("ISM.jl")
|
||||
include("moving_sources.jl")
|
||||
|
||||
export WASN
|
||||
include("WASN.jl")
|
||||
include("node_event.jl")
|
||||
|
||||
end # module
|
||||
|
|
77
src/WASN.jl
77
src/WASN.jl
|
@ -1,77 +0,0 @@
|
|||
module WASN
|
||||
|
||||
using LinearAlgebra
|
||||
using DSP: conv
|
||||
|
||||
using TxRxModels
|
||||
|
||||
using ..RoomAcoustics: AbstractRoom, AbstractRIRConfig, ISM
|
||||
|
||||
export Node, Event
|
||||
export synth_events
|
||||
|
||||
struct Node
|
||||
rx::TxRxArray
|
||||
fs::Real
|
||||
δ::Real
|
||||
end
|
||||
|
||||
struct Event # NOTE: TxNode może będzie lepszą nazwa?
|
||||
tx::TxRx
|
||||
emission::Real
|
||||
fs::Real
|
||||
signal::AbstractVector
|
||||
end
|
||||
|
||||
function synth_events(
|
||||
nodes::AbstractVector{<:Node},
|
||||
events::AbstractVector{<:Event},
|
||||
room::AbstractRoom,
|
||||
rir_config::AbstractRIRConfig,
|
||||
)
|
||||
hs = Matrix{Vector{Vector{Float64}}}(undef, nodes |> length, events |> length)
|
||||
iter = Iterators.product(nodes |> eachindex, events |> eachindex) |> collect
|
||||
Threads.@threads for (i,j) ∈ iter
|
||||
hs[i,j] = ISM(events[j].tx, nodes[i].rx, room, rir_config)
|
||||
end
|
||||
s = [[conv(h, events[j].signal) for h in hs[i, j]] for i ∈ eachindex(nodes), j ∈ eachindex(events)]
|
||||
|
||||
(signals=s, hs=hs)
|
||||
end
|
||||
|
||||
function synthesise(
|
||||
nodes::AbstractVector{<:Node},
|
||||
events::AbstractVector{<:Event},
|
||||
room::AbstractRoom,
|
||||
rir_config::AbstractRIRConfig,
|
||||
)
|
||||
# WARN: THIS FUNCTION ASSUMES NOW THAT ALL sampling rates are the same.
|
||||
fs = first(nodes).fs
|
||||
|
||||
# Synthesise individual events for given nodes
|
||||
e_signal, h_s = synth_events(nodes, events, room, rir_config)
|
||||
|
||||
# Find length of the output signal
|
||||
δ_max = [node.δ for node ∈ nodes] |> maximum;
|
||||
N = [ceil(Int, (events[j].emission + δ_max)*fs) + length(e_signal[1, j][1]) for j ∈ eachindex(events)] |> maximum
|
||||
N += floor(Int, fs)
|
||||
|
||||
# Allocate memory for output signals
|
||||
output = [zeros(N, node.rx.txrx |> length) for node ∈ nodes]
|
||||
|
||||
for i ∈ eachindex(nodes), j ∈ eachindex(events)
|
||||
shift_n = floor(Int, (events[j].emission + nodes[i].δ)*fs)
|
||||
event = e_signal[i,j]
|
||||
for (idx, channel) in enumerate(event)
|
||||
output[i][shift_n:shift_n+length(channel)-1, idx] .= channel
|
||||
end
|
||||
end
|
||||
|
||||
return (
|
||||
node = output,
|
||||
event = e_signal,
|
||||
h = h_s,
|
||||
)
|
||||
end
|
||||
|
||||
end # module WASN
|
57
src/node_event.jl
Normal file
57
src/node_event.jl
Normal file
|
@ -0,0 +1,57 @@
|
|||
|
||||
export synthesise_events4nodes, synthesise
|
||||
|
||||
function synthesise_events4nodes(
|
||||
nodes::AbstractVector{<:Node},
|
||||
events::AbstractVector{<:Event},
|
||||
room::AbstractRoom,
|
||||
rir_config::AbstractRIRConfig,
|
||||
)
|
||||
hs = Matrix{Vector{Vector{Float64}}}(undef, nodes |> length, events |> length)
|
||||
s = Matrix{Vector{Vector{Float64}}}(undef, nodes |> length, events |> length)
|
||||
iter = Iterators.product(nodes |> eachindex, events |> eachindex) |> collect
|
||||
for (i,j) ∈ iter
|
||||
hs[i,j] = ISM(events[j].tx, nodes[i].rx, room, rir_config)
|
||||
s[i,j] = [conv(h, events[j].signal) for h in hs[i, j]]
|
||||
end
|
||||
return (
|
||||
signals=s,
|
||||
hs=hs
|
||||
)
|
||||
end
|
||||
|
||||
function synthesise(
|
||||
nodes::AbstractVector{<:Node},
|
||||
events::AbstractVector{<:Event},
|
||||
room::AbstractRoom,
|
||||
rir_config::AbstractRIRConfig;
|
||||
pad::Real = 0.0
|
||||
)
|
||||
# WARN: AT THIS MOMENT THIS FUNCTION ASSUMES THAT ALL sampling rates are the same.
|
||||
fs = first(nodes).fs
|
||||
|
||||
# Synthesise individual events for ech node
|
||||
nodes_events, h = synthesise_events4nodes(nodes, events, room, rir_config)
|
||||
|
||||
# Compute length of the output signal
|
||||
δ_max = [node.δ for node ∈ nodes] |> maximum;
|
||||
N = [ceil(Int, (events[j].emission + δ_max)*fs) + length(nodes_events[1, j][1]) for j ∈ eachindex(events)] |> maximum
|
||||
N += floor(Int, pad*fs)
|
||||
|
||||
# Allocate memory for output signals
|
||||
output = [zeros(N, node.rx.txrx |> length) for node ∈ nodes]
|
||||
|
||||
for i ∈ eachindex(nodes), j ∈ eachindex(events)
|
||||
shift_n = floor(Int, (events[j].emission + nodes[i].δ)*fs)+1
|
||||
event = nodes_events[i,j]
|
||||
for (idx, channel) in enumerate(event)
|
||||
output[i][shift_n:shift_n+length(channel)-1, idx] .+= channel
|
||||
end
|
||||
end
|
||||
|
||||
return (
|
||||
node = output,
|
||||
event = nodes_events,
|
||||
h = h,
|
||||
)
|
||||
end
|
24
src/types.jl
24
src/types.jl
|
@ -1,7 +1,7 @@
|
|||
|
||||
export AbstractRoom, RectangularRoom
|
||||
export AbstractRIRConfig, ISMConfig
|
||||
|
||||
export Node, Event
|
||||
|
||||
|
||||
abstract type AbstractRoom end
|
||||
|
@ -42,3 +42,25 @@ function ISMConfig(
|
|||
end
|
||||
|
||||
|
||||
struct Node{T<:Real}
|
||||
rx::TxRxArray{T}
|
||||
fs::T
|
||||
δ::T
|
||||
function Node(rx, fs::T, δ::T = 0.0) where T
|
||||
δ < 0.0 && error("δ < 0")
|
||||
fs < 0.0 && error("fs < 0")
|
||||
new{T}(rx, fs, δ)
|
||||
end
|
||||
end
|
||||
|
||||
struct Event{T<:Real, V<:AbstractVector{<:T}} # NOTE: TxNode może będzie lepszą nazwa?
|
||||
tx::TxRx{T}
|
||||
emission::T
|
||||
fs::T
|
||||
signal::V
|
||||
function Event(tx, emission::T, fs::T, signal::V) where {T, V}
|
||||
emission < 0.0 && error("emission < 0")
|
||||
fs < 0.0 && error("fs < 0")
|
||||
new{T, V}(tx, emission, fs, signal)
|
||||
end
|
||||
end
|
||||
|
|
Loading…
Reference in a new issue