308 lines
9.4 KiB
Julia
308 lines
9.4 KiB
Julia
module TxRxModels
|
||
|
||
using LinearAlgebra
|
||
using StaticArrays
|
||
|
||
export directivity_pattern,
|
||
CardioidFamilyPattern,
|
||
Omnidirectional,
|
||
Subcardioid,
|
||
Cardioid,
|
||
Hypercardioid,
|
||
Bidirectional
|
||
export TxRx, TxRxArray
|
||
export uniform_circle, fibonacci_sphere
|
||
export linear_array, circular_array, fibonacci_array, physical_array
|
||
|
||
|
||
abstract type AbstractDirectivityPattern end
|
||
struct OmnidirectionalPattern <: AbstractDirectivityPattern end
|
||
struct SubcardioidPattern <: AbstractDirectivityPattern end
|
||
struct CardioidPattern <: AbstractDirectivityPattern end
|
||
struct HypercardioidPattern <: AbstractDirectivityPattern end
|
||
struct BidirectionalPattern <: AbstractDirectivityPattern end
|
||
struct CardioidFamilyPattern{T<:Real} <: AbstractDirectivityPattern
|
||
ρ::T
|
||
function CardioidFamilyPattern(ρ::T) where {T<:Real}
|
||
ρ < 0.0 && ρ > 1.0 && error("argument out of range, 0.0 ≤", ρ, " ≤ 1.0")
|
||
new{T}(ρ)
|
||
end
|
||
end
|
||
|
||
const Omnidirectional = OmnidirectionalPattern()
|
||
const Subcardioid = SubcardioidPattern()
|
||
const Cardioid = CardioidPattern()
|
||
const Hypercardioid = HypercardioidPattern()
|
||
const Bidirectional = BidirectionalPattern()
|
||
|
||
|
||
abstract type AbstractTxRx end
|
||
|
||
struct TxRx{T<:Real, D<:AbstractDirectivityPattern} <: AbstractTxRx
|
||
position::SVector{3, T} # Position
|
||
B::SMatrix{3, 3, T} # Orientation
|
||
directivity::D # Directivity pattern
|
||
noise::T # Noise floor [dB]
|
||
end
|
||
|
||
function TxRx(
|
||
position,
|
||
orientation=SMatrix{3,3}(1.0I),
|
||
directivity_pattern=Omnidirectional,
|
||
noise = -Inf
|
||
)
|
||
position = position |> SVector{3}
|
||
orientation = orientation |> SMatrix{3, 3}
|
||
TxRx(position, orientation, directivity_pattern, noise)
|
||
end
|
||
|
||
struct TxRxArray{T<:Real} <: AbstractTxRx
|
||
txrx::Vector{<:TxRx{T}} # list of TxRxes in the local frame
|
||
origin::SVector{3, T} # Position of the local origin in reference to the global origin
|
||
B::SMatrix{3, 3, T} # Orientation of the array (local -> global)
|
||
end
|
||
|
||
function TxRxArray(
|
||
txrx,
|
||
origin=SVector{3}([0., 0., 0.]),
|
||
orientation=SMatrix{3,3}(1.0I)
|
||
)
|
||
origin = origin |> SVector{3}
|
||
TxRxArray(txrx, origin, orientation)
|
||
end
|
||
|
||
|
||
"""
|
||
|
||
"""
|
||
function cardioid_pattern(
|
||
d::SVector{3, <:Real},
|
||
B::SMatrix{3, 3, <:Real},
|
||
ρ::Real,
|
||
)::Real
|
||
r = [1., 0., 0.]
|
||
ρ + (1-ρ) * r' * B' * d
|
||
end
|
||
|
||
|
||
"""
|
||
|
||
"""
|
||
function directivity_pattern(
|
||
d::SVector{3, <:Real},
|
||
txrx::TxRx,
|
||
)::Real
|
||
directivity_pattern(d, txrx.B, txrx.directivity)
|
||
end
|
||
|
||
|
||
"""
|
||
|
||
"""
|
||
function directivity_pattern(
|
||
d::SVector{3, <:Real},
|
||
B::SMatrix{3, 3, <:Real},
|
||
dp::CardioidFamilyPattern,
|
||
)::Real
|
||
cardioid_pattern(d, B, dp.ρ)
|
||
end
|
||
|
||
"""
|
||
|
||
"""
|
||
function directivity_pattern(
|
||
d::SVector{3, <:Real},
|
||
B::SMatrix{3, 3, <:Real},
|
||
::OmnidirectionalPattern,
|
||
)::Real
|
||
1
|
||
end
|
||
|
||
|
||
"""
|
||
|
||
"""
|
||
function directivity_pattern(
|
||
d::SVector{3, <:Real},
|
||
B::SMatrix{3, 3, <:Real},
|
||
::SubcardioidPattern,
|
||
)::Real
|
||
cardioid_pattern(d, B, 0.75)
|
||
end
|
||
|
||
|
||
"""
|
||
|
||
"""
|
||
function directivity_pattern(
|
||
d::SVector{3, <:Real},
|
||
B::SMatrix{3, 3, <:Real},
|
||
::CardioidPattern,
|
||
)::Real
|
||
cardioid_pattern(d, B, 0.50)
|
||
end
|
||
|
||
|
||
"""
|
||
|
||
"""
|
||
function directivity_pattern(
|
||
d::SVector{3, <:Real},
|
||
B::SMatrix{3, 3, <:Real},
|
||
::HypercardioidPattern,
|
||
)::Real
|
||
cardioid_pattern(d, B, 0.25)
|
||
end
|
||
|
||
|
||
"""
|
||
|
||
"""
|
||
function directivity_pattern(
|
||
d::SVector{3, <:Real},
|
||
B::SMatrix{3, 3, <:Real},
|
||
::BidirectionalPattern,
|
||
)::Real
|
||
cardioid_pattern(d, B, 0.00)
|
||
end
|
||
|
||
|
||
|
||
function uniform_circle(N::Integer)
|
||
Δα = 2π / N
|
||
[SVector{3}([cos(α), sin(α), 0]) for α ∈ 0:Δα:2π-Δα]
|
||
end
|
||
|
||
function fibonacci_sphere(N::Integer)
|
||
function f(i, offset, up, N)
|
||
y = i * offset - 1 + offset / 2
|
||
r = sqrt(1 - y^2)
|
||
ϕ = ((i + 1.0) % N) * up
|
||
x = cos(ϕ) * r
|
||
z = sin(ϕ) * r
|
||
return SVector{3}([x, y, z])
|
||
end
|
||
offset = 2.0 / N
|
||
up = π * (3.0 - √5.0)
|
||
[f(i, offset, up, N) for i = 0:N-1]
|
||
end
|
||
|
||
function linear_array(N::Integer, L::Real)
|
||
ΔL = L / (N - 1)
|
||
L2 = L / 2
|
||
[SVector{3}([x - L2, 0, 0]) for x ∈ 0.00:ΔL:(N-1)*ΔL]
|
||
end
|
||
|
||
function circular_array(N::Integer, r::Real)
|
||
Δα = 2π / N
|
||
[SVector{3}([r * cos(α), r * sin(α), 0]) for α ∈ 0:Δα:2π-Δα]
|
||
end
|
||
|
||
function fibonacci_array(N::Integer, r::Real)
|
||
P = fibonacci_sphere(N)
|
||
[SVector{3}(r .* p) for p in P]
|
||
end
|
||
|
||
function tetrahedron_array(r=1.0)
|
||
[
|
||
SVector{3}([+1,+1,+1] * r / √3 ),
|
||
SVector{3}([+1,-1,-1] * r / √3 ),
|
||
SVector{3}([-1,+1,-1] * r / √3 ),
|
||
SVector{3}([-1,-1,+1] * r / √3 ),
|
||
]
|
||
end
|
||
|
||
physical_array = (
|
||
matrix_voice = (
|
||
cartesian = [
|
||
SVector{3}([+0.00000, +0.00000, +0.00000]),
|
||
SVector{3}([-0.03813, +0.00358, +0.00000]),
|
||
SVector{3}([-0.02098, +0.03204, +0.00000]),
|
||
SVector{3}([+0.01197, +0.03638, +0.00000]),
|
||
SVector{3}([+0.03591, +0.01332, +0.00000]),
|
||
SVector{3}([+0.03281, -0.01977, +0.00000]),
|
||
SVector{3}([+0.00500, -0.03797, +0.00000]),
|
||
SVector{3}([-0.02657, -0.02758, +0.00000]),
|
||
],
|
||
),
|
||
respeaker_6mic = (
|
||
cartesian = (
|
||
SVector{3}([-0.02320, +0.04010, +0.00000]),
|
||
SVector{3}([-0.04630, +0.00000, +0.00000]),
|
||
SVector{3}([-0.02320, -0.04010, +0.00000]),
|
||
SVector{3}([+0.02320, -0.04010, +0.00000]),
|
||
SVector{3}([+0.04630, +0.00000, +0.00000]),
|
||
SVector{3}([+0.02320, +0.04010, +0.00000]),
|
||
),
|
||
),
|
||
em32 = let
|
||
r = 0.042
|
||
sph = [ # source: https://mhacoustics.com/sites/default/files/EigenmikeReleaseNotesV18.pdf
|
||
# r, θ φ
|
||
SVector{3}([r, 69, 0]), # Channel 01
|
||
SVector{3}([r, 90, 32]), # Channel 02
|
||
SVector{3}([r, 111, 0]), # Channel 03
|
||
SVector{3}([r, 90, 328]), # Channel 04
|
||
SVector{3}([r, 32, 0]), # Channel 05
|
||
SVector{3}([r, 55, 45]), # Channel 06
|
||
SVector{3}([r, 90, 69]), # Channel 07
|
||
SVector{3}([r, 125, 45]), # Channel 08
|
||
SVector{3}([r, 148, 0]), # Channel 09
|
||
SVector{3}([r, 125, 315]), # Channel 10
|
||
SVector{3}([r, 90, 291]), # Channel 11
|
||
SVector{3}([r, 55, 315]), # Channel 12
|
||
SVector{3}([r, 21, 91]), # Channel 13
|
||
SVector{3}([r, 58, 90]), # Channel 14
|
||
SVector{3}([r, 121, 90]), # Channel 15
|
||
SVector{3}([r, 159, 89]), # Channel 16
|
||
SVector{3}([r, 69, 180]), # Channel 17
|
||
SVector{3}([r, 90, 212]), # Channel 18
|
||
SVector{3}([r, 111, 180]), # Channel 19
|
||
SVector{3}([r, 90, 148]), # Channel 20
|
||
SVector{3}([r, 32, 180]), # Channel 21
|
||
SVector{3}([r, 55, 225]), # Channel 22
|
||
SVector{3}([r, 90, 249]), # Channel 23
|
||
SVector{3}([r, 125, 225]), # Channel 24
|
||
SVector{3}([r, 148, 180]), # Channel 25
|
||
SVector{3}([r, 125, 135]), # Channel 26
|
||
SVector{3}([r, 90, 111]), # Channel 27
|
||
SVector{3}([r, 55, 135]), # Channel 28
|
||
SVector{3}([r, 21, 269]), # Channel 29
|
||
SVector{3}([r, 58, 270]), # Channel 30
|
||
SVector{3}([r, 122, 270]), # Channel 31
|
||
SVector{3}([r, 159, 271]), # Channel 32
|
||
];
|
||
d2r((r, θ, φ)) = (r, θ*π/180., φ*π/180.)
|
||
s2c((r, θ, φ)) = (r*sin(θ)*cos(φ), r*sin(θ)*sin(φ), r*cos(θ))
|
||
(cartesian = sph .|> d2r .|> s2c, spherical = sph)
|
||
end,
|
||
zylia_zm1 = let
|
||
r = 0.049
|
||
sph = [ # Source: SPARTA Array2SH v1.6.8 plug-in
|
||
SVector{3}([r, +0.0000000000000000, +90.00000000000000]), # Channel 01
|
||
SVector{3}([r, +0.1752158999443054, +48.14300537109375]), # Channel 02
|
||
SVector{3}([r, +120.09252166748050, +48.13568878173828]), # Channel 03
|
||
SVector{3}([r, -119.94072723388670, +48.17926788330078]), # Channel 04
|
||
SVector{3}([r, -82.167846679687500, +19.42138671875000]), # Channel 05
|
||
SVector{3}([r, -37.613956451416020, +19.43202972412109]), # Channel 06
|
||
SVector{3}([r, +37.885848999023440, +19.41517066955566]), # Channel 07
|
||
SVector{3}([r, +82.290664672851560, +19.42664337158203]), # Channel 08
|
||
SVector{3}([r, +157.87617492675780, +19.43287277221680]), # Channel 09
|
||
SVector{3}([r, -157.59960937500000, +19.43940162658691]), # Channel 10
|
||
SVector{3}([r, -142.11413574218750, -19.41517066955566]), # Channel 11
|
||
SVector{3}([r, -97.709327697753910, -19.42664337158203]), # Channel 12
|
||
SVector{3}([r, -22.123807907104490, -19.43287277221680]), # Channel 13
|
||
SVector{3}([r, +22.400377273559570, -19.43940162658691]), # Channel 14
|
||
SVector{3}([r, +97.832138061523440, -19.42138671875000]), # Channel 15
|
||
SVector{3}([r, +142.38603210449220, -19.43202972412109]), # Channel 16
|
||
SVector{3}([r, -179.82476806640620, -48.14300537109375]), # Channel 17
|
||
SVector{3}([r, -59.907478332519530, -48.13568878173828]), # Channel 18
|
||
SVector{3}([r, +60.059268951416020, -48.17926788330078]), # Channel 19
|
||
];
|
||
d2r((r, θ, φ)) = SVector{3}([r, (θ+180)*π/180., (φ-90)*π/180.])
|
||
s2c((r, φ, θ)) = SVector{3}([r*sin(θ)*cos(φ), r*sin(θ)*sin(φ), r*cos(θ)])
|
||
(cartesian = sph .|> d2r .|> s2c, spherical = sph)
|
||
end
|
||
);
|
||
|
||
end # module TxRxModels
|