Constant size input STFT
This commit is contained in:
parent
a55523d7ee
commit
702628ed9c
2 changed files with 47 additions and 20 deletions
|
@ -1,7 +1,7 @@
|
|||
name = "STFT"
|
||||
uuid = "58bb99bf-048b-48b7-93e7-1cbf3ee61509"
|
||||
authors = ["Szymon M. Woźniak <s@zymon.org>"]
|
||||
version = "1.2.1"
|
||||
version = "1.3.0"
|
||||
|
||||
[deps]
|
||||
FFTW = "7a1cc6ca-52ef-59f5-83cd-3a7055c09341"
|
||||
|
|
65
src/STFT.jl
65
src/STFT.jl
|
@ -8,6 +8,18 @@ export stft, istft
|
|||
_fft(x::AbstractArray{<:Real}, d) = rfft(x, d)
|
||||
_fft(x::AbstractArray{<:Complex}, d) = fft(x, d)
|
||||
|
||||
function malloc_stft(
|
||||
x::M,
|
||||
w::V,
|
||||
L::I = zero(I),
|
||||
N::I = length(w);
|
||||
) where {T<:Number, I<:Integer, V<:AbstractVector{T}, M<:AbstractMatrix{T}}
|
||||
X, K = size(x) # Length of the signal in samples
|
||||
W = length(w) # Length of the window in samples
|
||||
S = (X-L) ÷ (W - L) # Number of segments
|
||||
N = N < W ? W : N # DFT size
|
||||
zeros(T, (N, S, K)) # Allocate container for signal segments
|
||||
end
|
||||
|
||||
|
||||
doc_analysis = """
|
||||
|
@ -94,6 +106,22 @@ function analysis() end
|
|||
"$doc_analysis"
|
||||
stft(x, w, L=0, N=length(w)) = analysis(x, w, L, N)
|
||||
|
||||
function analysis(
|
||||
x::M,
|
||||
w::V,
|
||||
L::I = zero(I),
|
||||
N::I = length(w);
|
||||
) where {T<:Number, I<:Integer, V<:AbstractVector{T}, M<:AbstractMatrix{T}}
|
||||
sc = malloc_stft(x, w, L, N)
|
||||
N, S, K = sc |> size
|
||||
W = w |> length
|
||||
|
||||
@turbo for k ∈ 1:K, s ∈ 1:S, n ∈ 1:W
|
||||
sc[n, s, k] = w[n] * x[(s-1)*(W-L)+n, k]
|
||||
end
|
||||
_fft(sc, 1) # Convert segments to frequency-domain
|
||||
end
|
||||
|
||||
function analysis(
|
||||
x::V,
|
||||
w::V,
|
||||
|
@ -104,25 +132,6 @@ function analysis(
|
|||
@view analysis(xx, w, L, N)[:, :, 1]
|
||||
end
|
||||
|
||||
function analysis(
|
||||
x::M,
|
||||
w::V,
|
||||
L::I = zero(I),
|
||||
N::I = length(w);
|
||||
) where {T<:Number, I<:Integer, V<:AbstractVector{T}, M<:AbstractMatrix{T}}
|
||||
X, K = size(x) # Length of the signal in samples
|
||||
W = length(w) # Length of the window in samples
|
||||
H = W - L # Hop
|
||||
S = (X-L) ÷ H # Number of segments
|
||||
N = N < W ? W : N # DFT size
|
||||
sc = zeros(T, N, S, K) # Allocate container for signal segments
|
||||
|
||||
@turbo for s ∈ 1:S, k ∈ 1:K, n ∈ 1:W
|
||||
sc[n, s, k] = w[n] * x[(s-1)*H+n, k]
|
||||
end
|
||||
_fft(sc, 1) # Convert segments to frequency-domain
|
||||
end
|
||||
|
||||
function analysis(
|
||||
xs::AbstractArray{<:AbstractVector{T}},
|
||||
w::AbstractVector{T},
|
||||
|
@ -250,4 +259,22 @@ function synthesis(
|
|||
xn ./ xd # Normalize
|
||||
end
|
||||
|
||||
"""
|
||||
Real-value signal STFT with constant input size.
|
||||
"""
|
||||
function rSTFTm(A, w, L, N=length(w))
|
||||
mem = STFT.malloc_stft(A, w, L, N)
|
||||
N, S, K = mem |> size
|
||||
W = w |> length
|
||||
P = plan_rfft(mem, 1)
|
||||
function f(x)
|
||||
@turbo for k ∈ 1:K, s ∈ 1:S, n ∈ 1:W
|
||||
mem[n, s, k] = w[n] * x[(s-1)*(W-L)+n, k]
|
||||
end
|
||||
P * mem
|
||||
end
|
||||
return f
|
||||
end
|
||||
|
||||
|
||||
end # module
|
||||
|
|
Loading…
Reference in a new issue