seeed-voicecard/ac108.c

1503 lines
47 KiB
C

/*
* ac10x.c -- ac10x ALSA SoC Audio driver
*
*
* Author: Baozhu Zuo<zuobaozhu@gmail.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
/* #undef DEBUG
* use 'make DEBUG=1' to enable debugging
*/
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/pm.h>
#include <linux/clk.h>
#include <linux/i2c.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/regmap.h>
#include <sound/core.h>
#include <sound/pcm.h>
#include <sound/pcm_params.h>
#include <sound/soc.h>
#include <sound/initval.h>
#include <sound/tlv.h>
#include "ac108.h"
#include "ac10x.h"
#define _USE_CAPTURE 1
#define _MASTER_INDEX 0
/**
* TODO:
* 1, add PM API: ac108_suspend,ac108_resume
* 2, add set_pll ,set_clkdiv
* 3,0x65-0x6a
* 4,0x76-0x79 high 4bit
*/
struct pll_div {
unsigned int freq_in;
unsigned int freq_out;
unsigned int m1;
unsigned int m2;
unsigned int n;
unsigned int k1;
unsigned int k2;
};
static struct ac10x_priv *ac10x;
struct real_val_to_reg_val {
unsigned int real_val;
unsigned int reg_val;
};
static const struct real_val_to_reg_val ac108_sample_rate[] = {
{ 8000, 0 },
{ 11025, 1 },
{ 12000, 2 },
{ 16000, 3 },
{ 22050, 4 },
{ 24000, 5 },
{ 32000, 6 },
{ 44100, 7 },
{ 48000, 8 },
{ 96000, 9 },
};
/* Sample resolution */
static const struct real_val_to_reg_val ac108_samp_res[] = {
{ 8, 1 },
{ 12, 2 },
{ 16, 3 },
{ 20, 4 },
{ 24, 5 },
{ 28, 6 },
{ 32, 7 },
};
static const unsigned ac108_bclkdivs[] = {
0, 1, 2, 4,
6, 8, 12, 16,
24, 32, 48, 64,
96, 128, 176, 192,
};
/* FOUT =(FIN * N) / [(M1+1) * (M2+1)*(K1+1)*(K2+1)] ; M1[0,31], M2[0,1], N[0,1023], K1[0,31], K2[0,1] */
static const struct pll_div ac108_pll_div_list[] = {
{ 400000, _FREQ_24_576K, 0, 0, 614, 4, 1 },
{ 512000, _FREQ_24_576K, 0, 0, 960, 9, 1 }, //_FREQ_24_576K/48
{ 768000, _FREQ_24_576K, 0, 0, 640, 9, 1 }, //_FREQ_24_576K/32
{ 800000, _FREQ_24_576K, 0, 0, 614, 9, 1 },
{ 1024000, _FREQ_24_576K, 0, 0, 480, 9, 1 }, //_FREQ_24_576K/24
{ 1600000, _FREQ_24_576K, 0, 0, 307, 9, 1 },
{ 2048000, _FREQ_24_576K, 0, 0, 240, 9, 1 }, /* accurate, 8000 * 256 */
{ 3072000, _FREQ_24_576K, 0, 0, 160, 9, 1 }, /* accurate, 12000 * 256 */
{ 4096000, _FREQ_24_576K, 2, 0, 360, 9, 1 }, /* accurate, 16000 * 256 */
{ 6000000, _FREQ_24_576K, 4, 0, 410, 9, 1 },
{ 12000000, _FREQ_24_576K, 9, 0, 410, 9, 1 },
{ 13000000, _FREQ_24_576K, 8, 0, 340, 9, 1 },
{ 15360000, _FREQ_24_576K, 12, 0, 415, 9, 1 },
{ 16000000, _FREQ_24_576K, 12, 0, 400, 9, 1 },
{ 19200000, _FREQ_24_576K, 15, 0, 410, 9, 1 },
{ 19680000, _FREQ_24_576K, 15, 0, 400, 9, 1 },
{ 24000000, _FREQ_24_576K, 4, 0, 128,24, 0 }, // accurate, 24M -> 24.576M */
{ 400000, _FREQ_22_579K, 0, 0, 566, 4, 1 },
{ 512000, _FREQ_22_579K, 0, 0, 880, 9, 1 },
{ 768000, _FREQ_22_579K, 0, 0, 587, 9, 1 },
{ 800000, _FREQ_22_579K, 0, 0, 567, 9, 1 },
{ 1024000, _FREQ_22_579K, 0, 0, 440, 9, 1 },
{ 1600000, _FREQ_22_579K, 1, 0, 567, 9, 1 },
{ 2048000, _FREQ_22_579K, 0, 0, 220, 9, 1 },
{ 3072000, _FREQ_22_579K, 0, 0, 148, 9, 1 },
{ 4096000, _FREQ_22_579K, 2, 0, 330, 9, 1 },
{ 6000000, _FREQ_22_579K, 2, 0, 227, 9, 1 },
{ 12000000, _FREQ_22_579K, 8, 0, 340, 9, 1 },
{ 13000000, _FREQ_22_579K, 9, 0, 350, 9, 1 },
{ 15360000, _FREQ_22_579K, 10, 0, 325, 9, 1 },
{ 16000000, _FREQ_22_579K, 11, 0, 340, 9, 1 },
{ 19200000, _FREQ_22_579K, 13, 0, 330, 9, 1 },
{ 19680000, _FREQ_22_579K, 14, 0, 345, 9, 1 },
{ 24000000, _FREQ_22_579K, 24, 0, 588,24, 0 }, // accurate, 24M -> 22.5792M */
{ _FREQ_24_576K / 1, _FREQ_24_576K, 9, 0, 200, 9, 1 }, //_FREQ_24_576K
{ _FREQ_24_576K / 2, _FREQ_24_576K, 9, 0, 400, 9, 1 }, /*12288000,accurate, 48000 * 256 */
{ _FREQ_24_576K / 4, _FREQ_24_576K, 4, 0, 400, 9, 1 }, /*6144000, accurate, 24000 * 256 */
{ _FREQ_24_576K / 16, _FREQ_24_576K, 0, 0, 320, 9, 1 }, //1536000
{ _FREQ_24_576K / 64, _FREQ_24_576K, 0, 0, 640, 4, 1 }, //384000
{ _FREQ_24_576K / 96, _FREQ_24_576K, 0, 0, 960, 4, 1 }, //256000
{ _FREQ_24_576K / 128, _FREQ_24_576K, 0, 0, 512, 1, 1 }, //192000
{ _FREQ_24_576K / 176, _FREQ_24_576K, 0, 0, 880, 4, 0 }, //140000
{ _FREQ_24_576K / 192, _FREQ_24_576K, 0, 0, 960, 4, 0 }, //128000
{ _FREQ_22_579K / 1, _FREQ_22_579K, 9, 0, 200, 9, 1 }, //_FREQ_22_579K
{ _FREQ_22_579K / 2, _FREQ_22_579K, 9, 0, 400, 9, 1 }, /*11289600,accurate, 44100 * 256 */
{ _FREQ_22_579K / 4, _FREQ_22_579K, 4, 0, 400, 9, 1 }, /*5644800, accurate, 22050 * 256 */
{ _FREQ_22_579K / 16, _FREQ_22_579K, 0, 0, 320, 9, 1 }, //1411200
{ _FREQ_22_579K / 64, _FREQ_22_579K, 0, 0, 640, 4, 1 }, //352800
{ _FREQ_22_579K / 96, _FREQ_22_579K, 0, 0, 960, 4, 1 }, //235200
{ _FREQ_22_579K / 128, _FREQ_22_579K, 0, 0, 512, 1, 1 }, //176400
{ _FREQ_22_579K / 176, _FREQ_22_579K, 0, 0, 880, 4, 0 }, //128290
{ _FREQ_22_579K / 192, _FREQ_22_579K, 0, 0, 960, 4, 0 }, //117600
{ _FREQ_22_579K / 6, _FREQ_22_579K, 2, 0, 360, 9, 1 }, //3763200
{ _FREQ_22_579K / 8, _FREQ_22_579K, 0, 0, 160, 9, 1 }, /*2822400, accurate, 11025 * 256 */
{ _FREQ_22_579K / 12, _FREQ_22_579K, 0, 0, 240, 9, 1 }, //1881600
{ _FREQ_22_579K / 24, _FREQ_22_579K, 0, 0, 480, 9, 1 }, //940800
{ _FREQ_22_579K / 32, _FREQ_22_579K, 0, 0, 640, 9, 1 }, //705600
{ _FREQ_22_579K / 48, _FREQ_22_579K, 0, 0, 960, 9, 1 }, //470400
};
/* AC108 definition */
#define AC108_CHANNELS_MAX 8 /* range[1, 16] */
#define AC108_RATES (SNDRV_PCM_RATE_8000_96000 & \
~(SNDRV_PCM_RATE_32000 | SNDRV_PCM_RATE_64000 | \
SNDRV_PCM_RATE_88200 | SNDRV_PCM_RATE_96000))
#define AC108_FORMATS (/*SNDRV_PCM_FMTBIT_S16_LE | \
SNDRV_PCM_FMTBIT_S20_3LE | \
SNDRV_PCM_FMTBIT_S24_LE |*/ \
SNDRV_PCM_FMTBIT_S32_LE)
static const DECLARE_TLV_DB_SCALE(tlv_adc_pga_gain, 0, 100, 0);
static const DECLARE_TLV_DB_SCALE(tlv_ch_digital_vol, -11925,75,0);
int ac10x_read(u8 reg, u8* rt_val, struct regmap* i2cm) {
int r, v = 0;
r = regmap_read(i2cm, reg, &v);
*rt_val = v;
return r;
}
int ac10x_write(u8 reg, u8 val, struct regmap* i2cm) {
int r;
if ((r = regmap_write(i2cm, reg, val)) < 0) {
pr_err("ac10x_write error->[REG-0x%02x,val-0x%02x]\n", reg, val);
}
return r;
}
int ac10x_update_bits(u8 reg, u8 mask, u8 val, struct regmap* i2cm) {
int r;
if ((r = regmap_update_bits(i2cm, reg, mask, val)) < 0) {
pr_err("ac10x_update error->[REG-0x%02x,val-0x%02x]\n", reg, val);
}
return r;
}
/**
* snd_ac108_get_volsw - single mixer get callback
* @kcontrol: mixer control
* @ucontrol: control element information
*
* Callback to get the value of a single mixer control, or a double mixer
* control that spans 2 registers.
*
* Returns 0 for success.
*/
static int snd_ac108_get_volsw(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol
){
struct soc_mixer_control *mc =
(struct soc_mixer_control *)kcontrol->private_value;
unsigned int mask = (1 << fls(mc->max)) - 1;
unsigned int invert = mc->invert;
int ret, chip = mc->autodisable;
u8 val;
if ((ret = ac10x_read(mc->reg, &val, ac10x->i2cmap[chip])) < 0)
return ret;
val = ((val >> mc->shift) & mask) - mc->min;
if (invert) {
val = mc->max - val;
}
ucontrol->value.integer.value[0] = val;
return 0;
}
/**
* snd_ac108_put_volsw - single mixer put callback
* @kcontrol: mixer control
* @ucontrol: control element information
*
* Callback to set the value of a single mixer control, or a double mixer
* control that spans 2 registers.
*
* Returns 0 for success.
*/
static int snd_ac108_put_volsw(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol
){
struct soc_mixer_control *mc =
(struct soc_mixer_control *)kcontrol->private_value;
unsigned int sign_bit = mc->sign_bit;
unsigned int val, mask = (1 << fls(mc->max)) - 1;
unsigned int invert = mc->invert;
int ret, chip = mc->autodisable;
if (sign_bit)
mask = BIT(sign_bit + 1) - 1;
val = ((ucontrol->value.integer.value[0] + mc->min) & mask);
if (invert) {
val = mc->max - val;
}
mask = mask << mc->shift;
val = val << mc->shift;
ret = ac10x_update_bits(mc->reg, mask, val, ac10x->i2cmap[chip]);
return ret;
}
#define SOC_AC108_SINGLE_TLV(xname, reg, shift, max, invert, chip, tlv_array) \
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
.access = SNDRV_CTL_ELEM_ACCESS_TLV_READ |\
SNDRV_CTL_ELEM_ACCESS_READWRITE,\
.tlv.p = (tlv_array), \
.info = snd_soc_info_volsw, .get = snd_ac108_get_volsw,\
.put = snd_ac108_put_volsw, \
.private_value = SOC_SINGLE_VALUE(reg, shift, max, invert, chip) }
/* single ac108 */
static const struct snd_kcontrol_new ac108_snd_controls[] = {
/* ### chip 0 ### */
/*0x70: ADC1 Digital Channel Volume Control Register*/
SOC_AC108_SINGLE_TLV("CH1 digital volume", ADC1_DVOL_CTRL, 0, 0xff, 0, 0, tlv_ch_digital_vol),
/*0x71: ADC2 Digital Channel Volume Control Register*/
SOC_AC108_SINGLE_TLV("CH2 digital volume", ADC2_DVOL_CTRL, 0, 0xff, 0, 0, tlv_ch_digital_vol),
/*0x72: ADC3 Digital Channel Volume Control Register*/
SOC_AC108_SINGLE_TLV("CH3 digital volume", ADC3_DVOL_CTRL, 0, 0xff, 0, 0, tlv_ch_digital_vol),
/*0x73: ADC4 Digital Channel Volume Control Register*/
SOC_AC108_SINGLE_TLV("CH4 digital volume", ADC4_DVOL_CTRL, 0, 0xff, 0, 0, tlv_ch_digital_vol),
/*0x90: Analog PGA1 Control Register*/
SOC_AC108_SINGLE_TLV("ADC1 PGA gain", ANA_PGA1_CTRL, ADC1_ANALOG_PGA, 0x1f, 0, 0, tlv_adc_pga_gain),
/*0x91: Analog PGA2 Control Register*/
SOC_AC108_SINGLE_TLV("ADC2 PGA gain", ANA_PGA2_CTRL, ADC2_ANALOG_PGA, 0x1f, 0, 0, tlv_adc_pga_gain),
/*0x92: Analog PGA3 Control Register*/
SOC_AC108_SINGLE_TLV("ADC3 PGA gain", ANA_PGA3_CTRL, ADC3_ANALOG_PGA, 0x1f, 0, 0, tlv_adc_pga_gain),
/*0x93: Analog PGA4 Control Register*/
SOC_AC108_SINGLE_TLV("ADC4 PGA gain", ANA_PGA4_CTRL, ADC4_ANALOG_PGA, 0x1f, 0, 0, tlv_adc_pga_gain),
};
/* multiple ac108s */
static const struct snd_kcontrol_new ac108tdm_snd_controls[] = {
/* ### chip 1 ### */
/*0x70: ADC1 Digital Channel Volume Control Register*/
SOC_AC108_SINGLE_TLV("CH1 digital volume", ADC1_DVOL_CTRL, 0, 0xff, 0, 1, tlv_ch_digital_vol),
/*0x71: ADC2 Digital Channel Volume Control Register*/
SOC_AC108_SINGLE_TLV("CH2 digital volume", ADC2_DVOL_CTRL, 0, 0xff, 0, 1, tlv_ch_digital_vol),
/*0x72: ADC3 Digital Channel Volume Control Register*/
SOC_AC108_SINGLE_TLV("CH3 digital volume", ADC3_DVOL_CTRL, 0, 0xff, 0, 1, tlv_ch_digital_vol),
/*0x73: ADC4 Digital Channel Volume Control Register*/
SOC_AC108_SINGLE_TLV("CH4 digital volume", ADC4_DVOL_CTRL, 0, 0xff, 0, 1, tlv_ch_digital_vol),
/*0x90: Analog PGA1 Control Register*/
SOC_AC108_SINGLE_TLV("ADC1 PGA gain", ANA_PGA1_CTRL, ADC1_ANALOG_PGA, 0x1f, 0, 1, tlv_adc_pga_gain),
/*0x91: Analog PGA2 Control Register*/
SOC_AC108_SINGLE_TLV("ADC2 PGA gain", ANA_PGA2_CTRL, ADC2_ANALOG_PGA, 0x1f, 0, 1, tlv_adc_pga_gain),
/*0x92: Analog PGA3 Control Register*/
SOC_AC108_SINGLE_TLV("ADC3 PGA gain", ANA_PGA3_CTRL, ADC3_ANALOG_PGA, 0x1f, 0, 1, tlv_adc_pga_gain),
/*0x93: Analog PGA4 Control Register*/
SOC_AC108_SINGLE_TLV("ADC4 PGA gain", ANA_PGA4_CTRL, ADC4_ANALOG_PGA, 0x1f, 0, 1, tlv_adc_pga_gain),
/* ### chip 0 ### */
/*0x70: ADC1 Digital Channel Volume Control Register*/
SOC_AC108_SINGLE_TLV("CH5 digital volume", ADC1_DVOL_CTRL, 0, 0xff, 0, 0, tlv_ch_digital_vol),
/*0x71: ADC2 Digital Channel Volume Control Register*/
SOC_AC108_SINGLE_TLV("CH6 digital volume", ADC2_DVOL_CTRL, 0, 0xff, 0, 0, tlv_ch_digital_vol),
/*0x72: ADC3 Digital Channel Volume Control Register*/
SOC_AC108_SINGLE_TLV("CH7 digital volume", ADC3_DVOL_CTRL, 0, 0xff, 0, 0, tlv_ch_digital_vol),
/*0x73: ADC4 Digital Channel Volume Control Register*/
SOC_AC108_SINGLE_TLV("CH8 digital volume", ADC4_DVOL_CTRL, 0, 0xff, 0, 0, tlv_ch_digital_vol),
/*0x90: Analog PGA1 Control Register*/
SOC_AC108_SINGLE_TLV("ADC5 PGA gain", ANA_PGA1_CTRL, ADC1_ANALOG_PGA, 0x1f, 0, 0, tlv_adc_pga_gain),
/*0x91: Analog PGA2 Control Register*/
SOC_AC108_SINGLE_TLV("ADC6 PGA gain", ANA_PGA2_CTRL, ADC2_ANALOG_PGA, 0x1f, 0, 0, tlv_adc_pga_gain),
/*0x92: Analog PGA3 Control Register*/
SOC_AC108_SINGLE_TLV("ADC7 PGA gain", ANA_PGA3_CTRL, ADC3_ANALOG_PGA, 0x1f, 0, 0, tlv_adc_pga_gain),
/*0x93: Analog PGA4 Control Register*/
SOC_AC108_SINGLE_TLV("ADC8 PGA gain", ANA_PGA4_CTRL, ADC4_ANALOG_PGA, 0x1f, 0, 0, tlv_adc_pga_gain),
};
static const struct snd_soc_dapm_widget ac108_dapm_widgets[] = {
//input widgets
SND_SOC_DAPM_INPUT("MIC1P"),
SND_SOC_DAPM_INPUT("MIC1N"),
SND_SOC_DAPM_INPUT("MIC2P"),
SND_SOC_DAPM_INPUT("MIC2N"),
SND_SOC_DAPM_INPUT("MIC3P"),
SND_SOC_DAPM_INPUT("MIC3N"),
SND_SOC_DAPM_INPUT("MIC4P"),
SND_SOC_DAPM_INPUT("MIC4N"),
SND_SOC_DAPM_INPUT("DMIC1"),
SND_SOC_DAPM_INPUT("DMIC2"),
/*0xa0: ADC1 Analog Control 1 Register*/
/*0xa1-0xa6:use the defualt value*/
SND_SOC_DAPM_AIF_IN("Channel 1 AAF", "Capture", 0, ANA_ADC1_CTRL1, ADC1_DSM_ENABLE, 1),
SND_SOC_DAPM_SUPPLY("Channel 1 EN", ANA_ADC1_CTRL1, ADC1_PGA_ENABLE, 1, NULL, 0),
SND_SOC_DAPM_MICBIAS("MIC1BIAS", ANA_ADC1_CTRL1, ADC1_MICBIAS_EN, 1),
/*0xa7: ADC2 Analog Control 1 Register*/
/*0xa8-0xad:use the defualt value*/
SND_SOC_DAPM_AIF_IN("Channel 2 AAF", "Capture", 0, ANA_ADC2_CTRL1, ADC2_DSM_ENABLE, 1),
SND_SOC_DAPM_SUPPLY("Channel 2 EN", ANA_ADC2_CTRL1, ADC2_PGA_ENABLE, 1, NULL, 0),
SND_SOC_DAPM_MICBIAS("MIC2BIAS", ANA_ADC2_CTRL1, ADC2_MICBIAS_EN, 1),
/*0xae: ADC3 Analog Control 1 Register*/
/*0xaf-0xb4:use the defualt value*/
SND_SOC_DAPM_AIF_IN("Channel 3 AAF", "Capture", 0, ANA_ADC3_CTRL1, ADC3_DSM_ENABLE, 1),
SND_SOC_DAPM_SUPPLY("Channel 3 EN", ANA_ADC3_CTRL1, ADC3_PGA_ENABLE, 1, NULL, 0),
SND_SOC_DAPM_MICBIAS("MIC3BIAS", ANA_ADC3_CTRL1, ADC3_MICBIAS_EN, 1),
/*0xb5: ADC4 Analog Control 1 Register*/
/*0xb6-0xbb:use the defualt value*/
SND_SOC_DAPM_AIF_IN("Channel 4 AAF", "Capture", 0, ANA_ADC4_CTRL1, ADC4_DSM_ENABLE, 1),
SND_SOC_DAPM_SUPPLY("Channel 4 EN", ANA_ADC4_CTRL1, ADC4_PGA_ENABLE, 1, NULL, 0),
SND_SOC_DAPM_MICBIAS("MIC4BIAS", ANA_ADC4_CTRL1, ADC4_MICBIAS_EN, 1),
/*0x61: ADC Digital Part Enable Register*/
SND_SOC_DAPM_SUPPLY("ADC EN", ADC_DIG_EN, 4, 1, NULL, 0),
SND_SOC_DAPM_ADC("ADC1", "Capture", ADC_DIG_EN, 0, 1),
SND_SOC_DAPM_ADC("ADC2", "Capture", ADC_DIG_EN, 1, 1),
SND_SOC_DAPM_ADC("ADC3", "Capture", ADC_DIG_EN, 2, 1),
SND_SOC_DAPM_ADC("ADC4", "Capture", ADC_DIG_EN, 3, 1),
SND_SOC_DAPM_SUPPLY("ADC1 CLK", ANA_ADC4_CTRL7, ADC1_CLK_GATING, 1, NULL, 0),
SND_SOC_DAPM_SUPPLY("ADC2 CLK", ANA_ADC4_CTRL7, ADC2_CLK_GATING, 1, NULL, 0),
SND_SOC_DAPM_SUPPLY("ADC3 CLK", ANA_ADC4_CTRL7, ADC3_CLK_GATING, 1, NULL, 0),
SND_SOC_DAPM_SUPPLY("ADC4 CLK", ANA_ADC4_CTRL7, ADC4_CLK_GATING, 1, NULL, 0),
SND_SOC_DAPM_SUPPLY("DSM EN", ANA_ADC4_CTRL6, DSM_DEMOFF, 1, NULL, 0),
/*0x62:Digital MIC Enable Register*/
SND_SOC_DAPM_MICBIAS("DMIC1 enable", DMIC_EN, 0, 0),
SND_SOC_DAPM_MICBIAS("DMIC2 enable", DMIC_EN, 1, 0),
};
static const struct snd_soc_dapm_route ac108_dapm_routes[] = {
{ "ADC1", NULL, "Channel 1 AAF" },
{ "ADC2", NULL, "Channel 2 AAF" },
{ "ADC3", NULL, "Channel 3 AAF" },
{ "ADC4", NULL, "Channel 4 AAF" },
{ "Channel 1 AAF", NULL, "MIC1BIAS" },
{ "Channel 2 AAF", NULL, "MIC2BIAS" },
{ "Channel 3 AAF", NULL, "MIC3BIAS" },
{ "Channel 4 AAF", NULL, "MIC4BIAS" },
{ "MIC1BIAS", NULL, "ADC1 CLK" },
{ "MIC2BIAS", NULL, "ADC2 CLK" },
{ "MIC3BIAS", NULL, "ADC3 CLK" },
{ "MIC4BIAS", NULL, "ADC4 CLK" },
{ "ADC1 CLK", NULL, "DSM EN" },
{ "ADC2 CLK", NULL, "DSM EN" },
{ "ADC3 CLK", NULL, "DSM EN" },
{ "ADC4 CLK", NULL, "DSM EN" },
{ "DSM EN", NULL, "ADC EN" },
{ "Channel 1 EN", NULL, "DSM EN" },
{ "Channel 2 EN", NULL, "DSM EN" },
{ "Channel 3 EN", NULL, "DSM EN" },
{ "Channel 4 EN", NULL, "DSM EN" },
{ "MIC1P", NULL, "Channel 1 EN" },
{ "MIC1N", NULL, "Channel 1 EN" },
{ "MIC2P", NULL, "Channel 2 EN" },
{ "MIC2N", NULL, "Channel 2 EN" },
{ "MIC3P", NULL, "Channel 3 EN" },
{ "MIC3N", NULL, "Channel 3 EN" },
{ "MIC4P", NULL, "Channel 4 EN" },
{ "MIC4N", NULL, "Channel 4 EN" },
};
static int ac108_multi_write(u8 reg, u8 val, struct ac10x_priv *ac10x) {
u8 i;
for (i = 0; i < ac10x->codec_cnt; i++) {
ac10x_write(reg, val, ac10x->i2cmap[i]);
}
return 0;
}
static int ac108_multi_update_bits(u8 reg, u8 mask, u8 val, struct ac10x_priv *ac10x) {
u8 i;
for (i = 0; i < ac10x->codec_cnt; i++) {
ac10x_update_bits(reg, mask, val, ac10x->i2cmap[i]);
}
return 0;
}
static unsigned int ac108_codec_read(struct snd_soc_codec *codec, unsigned int reg) {
unsigned char val_r;
struct ac10x_priv *ac10x = dev_get_drvdata(codec->dev);
/*read one chip is fine*/
ac10x_read(reg, &val_r, ac10x->i2cmap[_MASTER_INDEX]);
return val_r;
}
static int ac108_codec_write(struct snd_soc_codec *codec, unsigned int reg, unsigned int val) {
struct ac10x_priv *ac10x = dev_get_drvdata(codec->dev);
ac108_multi_write(reg, val, ac10x);
return 0;
}
/**
* The Power management related registers are Reg01h~Reg09h
* 0x01-0x05,0x08,use the default value
* @author baozhu (17-6-21)
*
* @param ac10x
*/
static void ac108_configure_power(struct ac10x_priv *ac10x) {
/**
* 0x06:Enable Analog LDO
*/
ac108_multi_update_bits(PWR_CTRL6, 0x01 << LDO33ANA_ENABLE, 0x01 << LDO33ANA_ENABLE, ac10x);
/**
* 0x07:
* Control VREF output and micbias voltage ?
* REF faststart disable, enable Enable VREF (needed for Analog
* LDO and MICBIAS)
*/
ac108_multi_update_bits(PWR_CTRL7, 0x1f << VREF_SEL | 0x01 << VREF_FASTSTART_ENABLE | 0x01 << VREF_ENABLE,
0x13 << VREF_SEL | 0x00 << VREF_FASTSTART_ENABLE | 0x01 << VREF_ENABLE, ac10x);
/**
* 0x09:
* Disable fast-start circuit on VREFP
* VREFP_RESCTRL=00=1 MOhm
* IGEN_TRIM=100=+25%
* Enable VREFP (needed by all audio input channels)
*/
ac108_multi_update_bits(PWR_CTRL9, 0x01 << VREFP_FASTSTART_ENABLE | 0x03 << VREFP_RESCTRL | 0x07 << IGEN_TRIM | 0x01 << VREFP_ENABLE,
0x00 << VREFP_FASTSTART_ENABLE | 0x00 << VREFP_RESCTRL | 0x04 << IGEN_TRIM | 0x01 << VREFP_ENABLE,
ac10x);
}
/**
* The clock management related registers are Reg20h~Reg25h
* The PLL management related registers are Reg10h~Reg18h.
* @author baozhu (17-6-20)
*
* @param ac10x
* @param rate : sample rate
*
* @return int : fail or success
*/
static int ac108_config_pll(struct ac10x_priv *ac10x, unsigned rate, unsigned lrck_ratio) {
unsigned int i = 0;
struct pll_div ac108_pll_div = { 0 };
if (ac10x->clk_id == SYSCLK_SRC_PLL) {
unsigned pll_src, pll_freq_in;
if (lrck_ratio == 0) {
/* PLL clock source from MCLK */
pll_freq_in = ac10x->sysclk;
pll_src = 0x0;
} else {
/* PLL clock source from BCLK */
pll_freq_in = rate * lrck_ratio;
pll_src = 0x1;
}
/* FOUT =(FIN * N) / [(M1+1) * (M2+1)*(K1+1)*(K2+1)] */
for (i = 0; i < ARRAY_SIZE(ac108_pll_div_list); i++) {
if (ac108_pll_div_list[i].freq_in == pll_freq_in && ac108_pll_div_list[i].freq_out % rate == 0) {
ac108_pll_div = ac108_pll_div_list[i];
dev_dbg(&ac10x->i2c[_MASTER_INDEX]->dev, "AC108 PLL freq_in match:%u, freq_out:%u\n\n",
ac108_pll_div.freq_in, ac108_pll_div.freq_out);
break;
}
}
/* 0x11,0x12,0x13,0x14: Config PLL DIV param M1/M2/N/K1/K2 */
ac108_multi_update_bits(PLL_CTRL5, 0x1f << PLL_POSTDIV1 | 0x01 << PLL_POSTDIV2,
ac108_pll_div.k1 << PLL_POSTDIV1 | ac108_pll_div.k2 << PLL_POSTDIV2, ac10x);
ac108_multi_update_bits(PLL_CTRL4, 0xff << PLL_LOOPDIV_LSB, (unsigned char)ac108_pll_div.n << PLL_LOOPDIV_LSB, ac10x);
ac108_multi_update_bits(PLL_CTRL3, 0x03 << PLL_LOOPDIV_MSB, (ac108_pll_div.n >> 8) << PLL_LOOPDIV_MSB, ac10x);
ac108_multi_update_bits(PLL_CTRL2, 0x1f << PLL_PREDIV1 | 0x01 << PLL_PREDIV2,
ac108_pll_div.m1 << PLL_PREDIV1 | ac108_pll_div.m2 << PLL_PREDIV2, ac10x);
/*0x18: PLL clk lock enable*/
ac108_multi_update_bits(PLL_LOCK_CTRL, 0x1 << PLL_LOCK_EN, 0x1 << PLL_LOCK_EN, ac10x);
/**
* 0x20: enable pll, pll source from mclk/bclk, sysclk source from pll, enable sysclk
*/
ac108_multi_update_bits(SYSCLK_CTRL, 0x01 << PLLCLK_EN | 0x03 << PLLCLK_SRC | 0x01 << SYSCLK_SRC | 0x01 << SYSCLK_EN,
0x01 << PLLCLK_EN |pll_src<< PLLCLK_SRC | 0x01 << SYSCLK_SRC | 0x01 << SYSCLK_EN, ac10x);
ac10x->mclk = ac108_pll_div.freq_out;
}
if (ac10x->clk_id == SYSCLK_SRC_MCLK) {
/**
*0x20: sysclk source from mclk, enable sysclk
*/
ac108_multi_update_bits(SYSCLK_CTRL, 0x01 << PLLCLK_EN | 0x01 << SYSCLK_SRC | 0x01 << SYSCLK_EN,
0x00 << PLLCLK_EN | 0x00 << SYSCLK_SRC | 0x01 << SYSCLK_EN, ac10x);
ac10x->mclk = ac10x->sysclk;
}
return 0;
}
/*
* support no more than 16 slots.
*/
static int ac108_multi_chips_slots(struct ac10x_priv *ac, int slots) {
int i;
/*
* codec0 enable slots 2,3,0,1 when 1 codec
*
* codec0 enable slots 6,7,0,1 when 2 codec
* codec1 enable slots 2,3,4,5
*
* ...
*/
for (i = 0; i < ac->codec_cnt; i++) {
/* rotate map, due to channels rotated by CPU_DAI */
const unsigned vec_mask[] = {
0x3 << 6 | 0x3, // slots 6,7,0,1
0xF << 2, // slots 2,3,4,5
0,
0,
};
const unsigned vec_maps[] = {
/*
* chip 0,
* mic 0 sample -> slot 6
* mic 1 sample -> slot 7
* mic 2 sample -> slot 0
* mic 3 sample -> slot 1
*/
0x0 << 12 | 0x1 << 14 | 0x2 << 0 | 0x3 << 2,
/*
* chip 1,
* mic 0 sample -> slot 2
* mic 1 sample -> slot 3
* mic 2 sample -> slot 4
* mic 3 sample -> slot 5
*/
0x0 << 4 | 0x1 << 6 | 0x2 << 8 | 0x3 << 10,
0,
0,
};
unsigned vec;
/* 0x38-0x3A I2S_TX1_CTRLx */
if (ac->codec_cnt == 1) {
vec = 0xFUL;
} else {
vec = vec_mask[i];
}
ac10x_write(I2S_TX1_CTRL1, slots - 1, ac->i2cmap[i]);
ac10x_write(I2S_TX1_CTRL2, (vec >> 0) & 0xFF, ac->i2cmap[i]);
ac10x_write(I2S_TX1_CTRL3, (vec >> 8) & 0xFF, ac->i2cmap[i]);
/* 0x3C-0x3F I2S_TX1_CHMP_CTRLx */
if (ac->codec_cnt == 1) {
vec = (0x2 << 0 | 0x3 << 2 | 0x0 << 4 | 0x1 << 6);
} else if (ac->codec_cnt == 2) {
vec = vec_maps[i];
}
ac10x_write(I2S_TX1_CHMP_CTRL1, (vec >> 0) & 0xFF, ac->i2cmap[i]);
ac10x_write(I2S_TX1_CHMP_CTRL2, (vec >> 8) & 0xFF, ac->i2cmap[i]);
ac10x_write(I2S_TX1_CHMP_CTRL3, (vec >> 16) & 0xFF, ac->i2cmap[i]);
ac10x_write(I2S_TX1_CHMP_CTRL4, (vec >> 24) & 0xFF, ac->i2cmap[i]);
}
return 0;
}
static int ac108_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *params, struct snd_soc_dai *dai) {
unsigned int i, channels, samp_res, rate;
struct snd_soc_codec *codec = dai->codec;
struct ac10x_priv *ac10x = snd_soc_codec_get_drvdata(codec);
unsigned bclkdiv;
int ret = 0;
u8 v;
dev_dbg(dai->dev, "%s() stream=%s play:%d capt:%d +++\n", __func__,
snd_pcm_stream_str(substream),
dai->playback_active, dai->capture_active);
if (ac10x->i2c101) {
ret = ac101_hw_params(substream, params, dai);
if (ret > 0) {
dev_dbg(dai->dev, "%s() L%d returned\n", __func__, __LINE__);
/* not configure hw_param twice */
return 0;
}
}
if ((substream->stream == SNDRV_PCM_STREAM_CAPTURE && dai->playback_active)
|| (substream->stream == SNDRV_PCM_STREAM_PLAYBACK && dai->capture_active)) {
/* not configure hw_param twice */
/* return 0; */
}
channels = params_channels(params);
/* Master mode, to clear cpu_dai fifos, output bclk without lrck */
ac10x_read(I2S_CTRL, &v, ac10x->i2cmap[_MASTER_INDEX]);
if (v & (0x01 << BCLK_IOEN)) {
ac10x_update_bits(I2S_CTRL, 0x1 << LRCK_IOEN, 0x0 << LRCK_IOEN, ac10x->i2cmap[_MASTER_INDEX]);
}
switch (params_format(params)) {
case SNDRV_PCM_FORMAT_S8:
samp_res = 0;
break;
case SNDRV_PCM_FORMAT_S16_LE:
samp_res = 2;
break;
case SNDRV_PCM_FORMAT_S20_3LE:
samp_res = 3;
break;
case SNDRV_PCM_FORMAT_S24_LE:
samp_res = 4;
break;
case SNDRV_PCM_FORMAT_S32_LE:
samp_res = 6;
break;
default:
pr_err("AC108 don't supported the sample resolution: %u\n", params_format(params));
return -EINVAL;
}
dev_dbg(dai->dev, "params rate: %d\n", params_rate(params));
for (i = 0; i < ARRAY_SIZE(ac108_sample_rate); i++) {
if (ac108_sample_rate[i].real_val == params_rate(params) / (ac10x->data_protocol + 1UL)) {
rate = i;
break;
}
}
if (i >= ARRAY_SIZE(ac108_sample_rate)) {
return -EINVAL;
}
if (channels == 8 && ac108_sample_rate[rate].real_val == 96000) {
/* 24.576M bit clock is not support by ac108 */
return -EINVAL;
}
dev_dbg(dai->dev, "rate: %d , channels: %d , samp_res: %d",
ac108_sample_rate[rate].real_val,
channels,
ac108_samp_res[samp_res].real_val);
/**
* 0x33:
* The 8-Low bit of LRCK period value. It is used to program
* the number of BCLKs per channel of sample frame. This value
* is interpreted as follow:
* The 8-Low bit of LRCK period value. It is used to program
* the number of BCLKs per channel of sample frame. This value
* is interpreted as follow: PCM mode: Number of BCLKs within
* (Left + Right) channel width I2S / Left-Justified /
* Right-Justified mode: Number of BCLKs within each individual
* channel width (Left or Right) N+1
* For example:
* n = 7: 8 BCLK width
* …
* n = 1023: 1024 BCLKs width
* 0X32[0:1]:
* The 2-High bit of LRCK period value.
*/
if (ac10x->i2s_mode != PCM_FORMAT) {
if (ac10x->data_protocol) {
ac108_multi_write(I2S_LRCK_CTRL2, ac108_samp_res[samp_res].real_val - 1, ac10x);
/*encoding mode, the max LRCK period value < 32,so the 2-High bit is zero*/
ac108_multi_update_bits(I2S_LRCK_CTRL1, 0x03 << 0, 0x00, ac10x);
} else {
/*TDM mode or normal mode*/
ac108_multi_update_bits(I2S_LRCK_CTRL1, 0x03 << 0, 0x00, ac10x);
}
} else {
unsigned div;
/*TDM mode or normal mode*/
div = ac108_samp_res[samp_res].real_val * channels - 1;
ac108_multi_write(I2S_LRCK_CTRL2, (div & 0xFF), ac10x);
ac108_multi_update_bits(I2S_LRCK_CTRL1, 0x03 << 0, (div >> 8) << 0, ac10x);
}
/**
* 0x35:
* TX Encoding mode will add 4bits to mark channel number
* TODO: need a chat to explain this
*/
ac108_multi_update_bits(I2S_FMT_CTRL2, 0x07 << SAMPLE_RESOLUTION | 0x07 << SLOT_WIDTH_SEL,
ac108_samp_res[samp_res].reg_val << SAMPLE_RESOLUTION
| ac108_samp_res[samp_res].reg_val << SLOT_WIDTH_SEL, ac10x);
/**
* 0x60:
* ADC Sample Rate synchronised with I2S1 clock zone
*/
ac108_multi_update_bits(ADC_SPRC, 0x0f << ADC_FS_I2S1, ac108_sample_rate[rate].reg_val << ADC_FS_I2S1, ac10x);
ac108_multi_write(HPF_EN, 0x0F, ac10x);
if (ac10x->i2c101 && _MASTER_MULTI_CODEC == _MASTER_AC101) {
ac108_config_pll(ac10x, ac108_sample_rate[rate].real_val, ac108_samp_res[samp_res].real_val * channels);
} else {
ac108_config_pll(ac10x, ac108_sample_rate[rate].real_val, 0);
}
/*
* master mode only
*/
bclkdiv = ac10x->mclk / (ac108_sample_rate[rate].real_val * channels * ac108_samp_res[samp_res].real_val);
for (i = 0; i < ARRAY_SIZE(ac108_bclkdivs) - 1; i++) {
if (ac108_bclkdivs[i] >= bclkdiv) {
break;
}
}
ac108_multi_update_bits(I2S_BCLK_CTRL, 0x0F << BCLKDIV, i << BCLKDIV, ac10x);
/*
* slots allocation for each chip
*/
ac108_multi_chips_slots(ac10x, channels);
/*0x21: Module clock enable<I2S, ADC digital, MIC offset Calibration, ADC analog>*/
ac108_multi_write(MOD_CLK_EN, 1 << I2S | 1 << ADC_DIGITAL | 1 << MIC_OFFSET_CALIBRATION | 1 << ADC_ANALOG, ac10x);
/*0x22: Module reset de-asserted<I2S, ADC digital, MIC offset Calibration, ADC analog>*/
ac108_multi_write(MOD_RST_CTRL, 1 << I2S | 1 << ADC_DIGITAL | 1 << MIC_OFFSET_CALIBRATION | 1 << ADC_ANALOG, ac10x);
dev_dbg(dai->dev, "%s() stream=%s ---\n", __func__,
snd_pcm_stream_str(substream));
return 0;
}
static int ac108_set_sysclk(struct snd_soc_dai *dai, int clk_id, unsigned int freq, int dir) {
struct ac10x_priv *ac10x = snd_soc_dai_get_drvdata(dai);
freq = 24000000;
clk_id = SYSCLK_SRC_PLL;
pr_info("%s :%d\n", __FUNCTION__, freq);
switch (clk_id) {
case SYSCLK_SRC_MCLK:
ac108_multi_update_bits(SYSCLK_CTRL, 0x1 << SYSCLK_SRC, SYSCLK_SRC_MCLK << SYSCLK_SRC, ac10x);
break;
case SYSCLK_SRC_PLL:
ac108_multi_update_bits(SYSCLK_CTRL, 0x1 << SYSCLK_SRC, SYSCLK_SRC_PLL << SYSCLK_SRC, ac10x);
break;
default:
return -EINVAL;
}
ac10x->sysclk = freq;
ac10x->clk_id = clk_id;
return 0;
}
/**
* The i2s format management related registers are Reg
* 30h~Reg36h
* 33h,35h will be set in ac108_hw_params, It's BCLK width and
* Sample Resolution.
* @author baozhu (17-6-20)
*
* @param dai
* @param fmt
*
* @return int
*/
static int ac108_set_fmt(struct snd_soc_dai *dai, unsigned int fmt) {
unsigned char tx_offset, lrck_polarity, brck_polarity;
struct ac10x_priv *ac10x = dev_get_drvdata(dai->dev);
dev_dbg(dai->dev, "%s\n", __FUNCTION__);
switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
case SND_SOC_DAIFMT_CBM_CFM: /*AC108 Master*/
if (! ac10x->i2c101 || _MASTER_MULTI_CODEC == _MASTER_AC108) {
dev_dbg(dai->dev, "AC108 set to work as Master\n");
/**
* 0x30:chip is master mode ,BCLK & LRCK output
*/
ac108_multi_update_bits(I2S_CTRL, 0x03 << LRCK_IOEN | 0x03 << SDO1_EN | 0x1 << TXEN | 0x1 << GEN,
0x00 << LRCK_IOEN | 0x03 << SDO1_EN | 0x1 << TXEN | 0x1 << GEN, ac10x);
/* multi_chips: only one chip set as Master, and the others also need to set as Slave */
ac10x_update_bits(I2S_CTRL, 0x3 << LRCK_IOEN, 0x01 << BCLK_IOEN, ac10x->i2cmap[_MASTER_INDEX]);
break;
} else {
/* TODO: Both cpu_dai and codec_dai(AC108) be set as slave in DTS */
dev_dbg(dai->dev, "used as slave when AC101 is master\n");
}
case SND_SOC_DAIFMT_CBS_CFS: /*AC108 Slave*/
dev_dbg(dai->dev, "AC108 set to work as Slave\n");
/**
* 0x30:chip is slave mode, BCLK & LRCK input,enable SDO1_EN and
* SDO2_EN, Transmitter Block Enable, Globe Enable
*/
ac108_multi_update_bits(I2S_CTRL, 0x03 << LRCK_IOEN | 0x03 << SDO1_EN | 0x0 << TXEN | 0x0 << GEN,
0x00 << LRCK_IOEN | 0x03 << SDO1_EN | 0x0 << TXEN | 0x0 << GEN, ac10x);
break;
default:
pr_err("AC108 Master/Slave mode config error:%u\n\n", (fmt & SND_SOC_DAIFMT_MASTER_MASK) >> 12);
return -EINVAL;
}
/*AC108 config I2S/LJ/RJ/PCM format*/
switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
case SND_SOC_DAIFMT_I2S:
dev_dbg(dai->dev, "AC108 config I2S format\n");
ac10x->i2s_mode = LEFT_JUSTIFIED_FORMAT;
tx_offset = 1;
break;
case SND_SOC_DAIFMT_RIGHT_J:
dev_dbg(dai->dev, "AC108 config RIGHT-JUSTIFIED format\n");
ac10x->i2s_mode = RIGHT_JUSTIFIED_FORMAT;
tx_offset = 0;
break;
case SND_SOC_DAIFMT_LEFT_J:
dev_dbg(dai->dev, "AC108 config LEFT-JUSTIFIED format\n");
ac10x->i2s_mode = LEFT_JUSTIFIED_FORMAT;
tx_offset = 0;
break;
case SND_SOC_DAIFMT_DSP_A:
dev_dbg(dai->dev, "AC108 config PCM-A format\n");
ac10x->i2s_mode = PCM_FORMAT;
tx_offset = 1;
break;
case SND_SOC_DAIFMT_DSP_B:
dev_dbg(dai->dev, "AC108 config PCM-B format\n");
ac10x->i2s_mode = PCM_FORMAT;
tx_offset = 0;
break;
default:
pr_err("AC108 I2S format config error:%u\n\n", fmt & SND_SOC_DAIFMT_FORMAT_MASK);
return -EINVAL;
}
/*AC108 config BCLK&LRCK polarity*/
switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
case SND_SOC_DAIFMT_NB_NF:
dev_dbg(dai->dev, "AC108 config BCLK&LRCK polarity: BCLK_normal,LRCK_normal\n");
brck_polarity = BCLK_NORMAL_DRIVE_N_SAMPLE_P;
lrck_polarity = LRCK_LEFT_HIGH_RIGHT_LOW;
break;
case SND_SOC_DAIFMT_NB_IF:
dev_dbg(dai->dev, "AC108 config BCLK&LRCK polarity: BCLK_normal,LRCK_invert\n");
brck_polarity = BCLK_NORMAL_DRIVE_N_SAMPLE_P;
lrck_polarity = LRCK_LEFT_LOW_RIGHT_HIGH;
break;
case SND_SOC_DAIFMT_IB_NF:
dev_dbg(dai->dev, "AC108 config BCLK&LRCK polarity: BCLK_invert,LRCK_normal\n");
brck_polarity = BCLK_INVERT_DRIVE_P_SAMPLE_N;
lrck_polarity = LRCK_LEFT_HIGH_RIGHT_LOW;
break;
case SND_SOC_DAIFMT_IB_IF:
dev_dbg(dai->dev, "AC108 config BCLK&LRCK polarity: BCLK_invert,LRCK_invert\n");
brck_polarity = BCLK_INVERT_DRIVE_P_SAMPLE_N;
lrck_polarity = LRCK_LEFT_LOW_RIGHT_HIGH;
break;
default:
pr_err("AC108 config BCLK/LRCLK polarity error:%u\n\n", (fmt & SND_SOC_DAIFMT_INV_MASK) >> 8);
return -EINVAL;
}
ac108_configure_power(ac10x);
/**
*0x31: 0: normal mode, negative edge drive and positive edge sample
1: invert mode, positive edge drive and negative edge sample
*/
ac108_multi_update_bits(I2S_BCLK_CTRL, 0x01 << BCLK_POLARITY, brck_polarity << BCLK_POLARITY, ac10x);
/**
* 0x32: same as 0x31
*/
ac108_multi_update_bits(I2S_LRCK_CTRL1, 0x01 << LRCK_POLARITY, lrck_polarity << LRCK_POLARITY, ac10x);
/**
* 0x34:Encoding Mode Selection,Mode
* Selection,data is offset by 1 BCLKs to LRCK
* normal mode for the last half cycle of BCLK in the slot ?
* turn to hi-z state (TDM) when not transferring slot ?
*/
ac108_multi_update_bits(I2S_FMT_CTRL1, 0x01 << ENCD_SEL | 0x03 << MODE_SEL | 0x01 << TX2_OFFSET |
0x01 << TX1_OFFSET | 0x01 << TX_SLOT_HIZ | 0x01 << TX_STATE,
ac10x->data_protocol << ENCD_SEL |
ac10x->i2s_mode << MODE_SEL |
tx_offset << TX2_OFFSET |
tx_offset << TX1_OFFSET |
0x00 << TX_SLOT_HIZ |
0x01 << TX_STATE, ac10x);
/**
* 0x60:
* MSB / LSB First Select: This driver only support MSB First Select .
* OUT2_MUTE,OUT1_MUTE shoule be set in widget.
* LRCK = 1 BCLK width
* Linear PCM
*
* TODO:pcm mode, bit[0:1] and bit[2] is special
*/
ac108_multi_update_bits(I2S_FMT_CTRL3, 0x01 << TX_MLS | 0x03 << SEXT | 0x01 << LRCK_WIDTH | 0x03 << TX_PDM,
0x00 << TX_MLS | 0x03 << SEXT | 0x00 << LRCK_WIDTH | 0x00 << TX_PDM, ac10x);
ac108_multi_write(HPF_EN, 0x00, ac10x);
if (ac10x->i2c101) {
return ac101_set_dai_fmt(dai, fmt);
}
return 0;
}
/*
* due to miss channels order in cpu_dai, we meed defer the clock starting.
*/
static int ac108_set_clock(int y_start_n_stop) {
unsigned long flags;
u8 r;
dev_dbg(ac10x->codec->dev, "%s() L%d start:%d\n", __func__, __LINE__, y_start_n_stop);
spin_lock_irqsave(&ac10x->lock, flags);
if (y_start_n_stop) {
/* enable lrck clock */
ac10x_read(I2S_CTRL, &r, ac10x->i2cmap[_MASTER_INDEX]);
if (r & (0x01 << BCLK_IOEN)) {
ac10x_update_bits(I2S_CTRL, 0x03 << LRCK_IOEN, 0x03 << LRCK_IOEN, ac10x->i2cmap[_MASTER_INDEX]);
}
/* enable global clock */
ac108_multi_update_bits(I2S_CTRL, 0x1 << TXEN | 0x1 << GEN, 0x1 << TXEN | 0x1 << GEN, ac10x);
} else {
/* disable lrck clock if it's enabled */
ac10x_read(I2S_CTRL, &r, ac10x->i2cmap[_MASTER_INDEX]);
if (r & (0x01 << LRCK_IOEN)) {
ac108_multi_update_bits(I2S_CTRL, 0x1 << TXEN | 0x1 << GEN, 0x1 << TXEN | 0x0 << GEN, ac10x);
ac10x_update_bits(I2S_CTRL, 0x03 << LRCK_IOEN, 0x01 << BCLK_IOEN, ac10x->i2cmap[_MASTER_INDEX]);
ac108_multi_update_bits(I2S_CTRL, 0x1 << TXEN | 0x1 << GEN, 0x1 << TXEN | 0x1 << GEN, ac10x);
}
}
spin_unlock_irqrestore(&ac10x->lock, flags);
return 0;
}
static int ac108_prepare(struct snd_pcm_substream *substream,
struct snd_soc_dai *dai)
{
dev_dbg(dai->dev, "%s() stream=%s\n",
__func__,
snd_pcm_stream_str(substream));
return 0;
}
static int ac108_trigger(struct snd_pcm_substream *substream, int cmd,
struct snd_soc_dai *dai)
{
struct snd_soc_codec *codec = dai->codec;
struct ac10x_priv *ac10x = snd_soc_codec_get_drvdata(codec);
unsigned long flags;
int ret = 0;
u8 r;
dev_dbg(dai->dev, "%s() stream=%s cmd=%d\n",
__FUNCTION__,
snd_pcm_stream_str(substream),
cmd);
spin_lock_irqsave(&ac10x->lock, flags);
if (ac10x->i2c101 && _MASTER_MULTI_CODEC == _MASTER_AC101) {
ac101_trigger(substream, cmd, dai);
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
goto __ret;
}
}
switch (cmd) {
case SNDRV_PCM_TRIGGER_START:
case SNDRV_PCM_TRIGGER_RESUME:
case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
/* disable global clock if lrck disabled */
ac10x_read(I2S_CTRL, &r, ac10x->i2cmap[_MASTER_INDEX]);
if ((r & (0x01 << BCLK_IOEN)) && (r & (0x01 << LRCK_IOEN)) == 0) {
/* disable global clock */
ac108_multi_update_bits(I2S_CTRL, 0x1 << TXEN | 0x1 << GEN, 0x1 << TXEN | 0x0 << GEN, ac10x);
}
/*0x10: PLL Common voltage enable, PLL enable */
ac108_multi_update_bits(PLL_CTRL1, 0x01 << PLL_EN | 0x01 << PLL_COM_EN,
0x01 << PLL_EN | 0x01 << PLL_COM_EN, ac10x);
if (ac10x->i2c101 && _MASTER_MULTI_CODEC == _MASTER_AC101) {
/* enable global clock */
ac108_multi_update_bits(I2S_CTRL, 0x1 << TXEN | 0x1 << GEN, 0x1 << TXEN | 0x1 << GEN, ac10x);
}
/* delayed clock starting, move to simple_card_trigger() */
break;
case SNDRV_PCM_TRIGGER_STOP:
case SNDRV_PCM_TRIGGER_SUSPEND:
case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
/*0x10: PLL Common voltage disable, PLL disable */
ac108_multi_update_bits(PLL_CTRL1, 0x01 << PLL_EN | 0x01 << PLL_COM_EN,
0x00 << PLL_EN | 0x00 << PLL_COM_EN, ac10x);
if (ac10x->i2c101 && _MASTER_MULTI_CODEC == _MASTER_AC101) {
/* disable global clock */
ac108_multi_update_bits(I2S_CTRL, 0x1 << TXEN | 0x1 << GEN, 0x0 << TXEN | 0x0 << GEN, ac10x);
}
break;
default:
ret = -EINVAL;
}
__ret:
spin_unlock_irqrestore(&ac10x->lock, flags);
return ret;
}
int ac108_audio_startup(struct snd_pcm_substream *substream,
struct snd_soc_dai *dai
) {
struct snd_soc_codec *codec = dai->codec;
struct ac10x_priv *ac10x = snd_soc_codec_get_drvdata(codec);
if (ac10x->i2c101) {
return ac101_audio_startup(substream, dai);
}
return 0;
}
void ac108_aif_shutdown(struct snd_pcm_substream *substream,
struct snd_soc_dai *dai
) {
struct snd_soc_codec *codec = dai->codec;
struct ac10x_priv *ac10x = snd_soc_codec_get_drvdata(codec);
if (ac10x->i2c101) {
ac101_aif_shutdown(substream, dai);
}
}
int ac108_aif_mute(struct snd_soc_dai *dai, int mute) {
struct snd_soc_codec *codec = dai->codec;
struct ac10x_priv *ac10x = snd_soc_codec_get_drvdata(codec);
if (ac10x->i2c101) {
return ac101_aif_mute(dai, mute);
}
return 0;
}
static const struct snd_soc_dai_ops ac108_dai_ops = {
.startup = ac108_audio_startup,
.shutdown = ac108_aif_shutdown,
/*DAI clocking configuration*/
.set_sysclk = ac108_set_sysclk,
/*ALSA PCM audio operations*/
.hw_params = ac108_hw_params,
.prepare = ac108_prepare,
.trigger = ac108_trigger,
.digital_mute = ac108_aif_mute,
/*DAI format configuration*/
.set_fmt = ac108_set_fmt,
// .hw_free = ac108_hw_free,
};
static struct snd_soc_dai_driver ac108_dai0 = {
.name = "ac10x-codec0",
#if _USE_CAPTURE
.playback = {
.stream_name = "Playback",
.channels_min = 1,
.channels_max = AC108_CHANNELS_MAX,
.rates = AC108_RATES,
.formats = AC108_FORMATS,
},
#endif
.capture = {
.stream_name = "Capture",
.channels_min = 1,
.channels_max = AC108_CHANNELS_MAX,
.rates = AC108_RATES,
.formats = AC108_FORMATS,
},
.ops = &ac108_dai_ops,
};
static struct snd_soc_dai_driver ac108_dai1 = {
.name = "ac10x-codec1",
#if _USE_CAPTURE
.playback = {
.stream_name = "Playback",
.channels_min = 1,
.channels_max = AC108_CHANNELS_MAX,
.rates = AC108_RATES,
.formats = AC108_FORMATS,
},
#endif
.capture = {
.stream_name = "Capture",
.channels_min = 1,
.channels_max = AC108_CHANNELS_MAX,
.rates = AC108_RATES,
.formats = AC108_FORMATS,
},
.ops = &ac108_dai_ops,
};
static struct snd_soc_dai_driver *ac108_dai[] = {
&ac108_dai0,
&ac108_dai1,
};
static int ac108_add_widgets(struct snd_soc_codec *codec) {
struct ac10x_priv *ac10x = snd_soc_codec_get_drvdata(codec);
struct snd_soc_dapm_context *dapm = snd_soc_codec_get_dapm(codec);
const struct snd_kcontrol_new* snd_kcntl = ac108_snd_controls;
int ctrl_cnt = ARRAY_SIZE(ac108_snd_controls);
/* only register controls correspond to exist chips */
if (ac10x->tdm_chips_cnt >= 2) {
snd_kcntl = ac108tdm_snd_controls;
ctrl_cnt = ARRAY_SIZE(ac108tdm_snd_controls);
}
snd_soc_add_codec_controls(codec, snd_kcntl, ctrl_cnt);
snd_soc_dapm_new_controls(dapm, ac108_dapm_widgets,ARRAY_SIZE(ac108_dapm_widgets));
snd_soc_dapm_add_routes(dapm, ac108_dapm_routes, ARRAY_SIZE(ac108_dapm_routes));
return 0;
}
static int ac108_probe(struct snd_soc_codec *codec) {
ac10x->codec = codec;
dev_set_drvdata(codec->dev, ac10x);
ac108_add_widgets(codec);
if (ac10x->i2c101) {
ac101_codec_probe(codec);
}
return 0;
}
static int ac108_set_bias_level(struct snd_soc_codec *codec, enum snd_soc_bias_level level) {
struct ac10x_priv *ac10x = snd_soc_codec_get_drvdata(codec);
dev_dbg(codec->dev, "AC108 level:%d\n", level);
switch (level) {
case SND_SOC_BIAS_ON:
ac108_multi_update_bits(ANA_ADC1_CTRL1, 0x01 << ADC1_MICBIAS_EN, 0x01 << ADC1_MICBIAS_EN, ac10x);
ac108_multi_update_bits(ANA_ADC2_CTRL1, 0x01 << ADC2_MICBIAS_EN, 0x01 << ADC2_MICBIAS_EN, ac10x);
ac108_multi_update_bits(ANA_ADC3_CTRL1, 0x01 << ADC3_MICBIAS_EN, 0x01 << ADC3_MICBIAS_EN, ac10x);
ac108_multi_update_bits(ANA_ADC4_CTRL1, 0x01 << ADC4_MICBIAS_EN, 0x01 << ADC4_MICBIAS_EN, ac10x);
break;
case SND_SOC_BIAS_PREPARE:
/* Put the MICBIASes into regulating mode */
break;
case SND_SOC_BIAS_STANDBY:
break;
case SND_SOC_BIAS_OFF:
ac108_multi_update_bits(ANA_ADC1_CTRL1, 0x01 << ADC1_MICBIAS_EN, 0x00 << ADC1_MICBIAS_EN, ac10x);
ac108_multi_update_bits(ANA_ADC2_CTRL1, 0x01 << ADC2_MICBIAS_EN, 0x00 << ADC2_MICBIAS_EN, ac10x);
ac108_multi_update_bits(ANA_ADC3_CTRL1, 0x01 << ADC3_MICBIAS_EN, 0x00 << ADC3_MICBIAS_EN, ac10x);
ac108_multi_update_bits(ANA_ADC4_CTRL1, 0x01 << ADC4_MICBIAS_EN, 0x00 << ADC4_MICBIAS_EN, ac10x);
break;
}
if (ac10x->i2c101) {
ac101_set_bias_level(codec, level);
}
return 0;
}
int ac108_codec_remove(struct snd_soc_codec *codec) {
struct ac10x_priv *ac10x = snd_soc_codec_get_drvdata(codec);
if (! ac10x->i2c101) {
return 0;
}
return ac101_codec_remove(codec);
}
int ac108_codec_suspend(struct snd_soc_codec *codec) {
struct ac10x_priv *ac10x = snd_soc_codec_get_drvdata(codec);
int i;
for (i = 0; i < ac10x->codec_cnt; i++) {
regcache_cache_only(ac10x->i2cmap[i], true);
}
if (! ac10x->i2c101) {
return 0;
}
return ac101_codec_suspend(codec);
}
int ac108_codec_resume(struct snd_soc_codec *codec) {
struct ac10x_priv *ac10x = snd_soc_codec_get_drvdata(codec);
int i, ret;
/* Sync reg_cache with the hardware */
for (i = 0; i < ac10x->codec_cnt; i++) {
regcache_cache_only(ac10x->i2cmap[i], false);
ret = regcache_sync(ac10x->i2cmap[i]);
if (ret != 0) {
dev_err(codec->dev, "Failed to sync i2cmap%d register cache: %d\n", i, ret);
regcache_cache_only(ac10x->i2cmap[i], true);
}
}
if (! ac10x->i2c101) {
return 0;
}
return ac101_codec_resume(codec);
}
static struct snd_soc_codec_driver ac10x_soc_codec_driver = {
.probe = ac108_probe,
.remove = ac108_codec_remove,
.suspend = ac108_codec_suspend,
.resume = ac108_codec_resume,
.set_bias_level = ac108_set_bias_level,
.read = ac108_codec_read,
.write = ac108_codec_write,
};
static ssize_t ac108_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) {
int val = 0, flag = 0;
u8 i = 0, reg, num, value_w, value_r[4];
val = simple_strtol(buf, NULL, 16);
flag = (val >> 16) & 0xF;
if (flag) {
reg = (val >> 8) & 0xFF;
value_w = val & 0xFF;
ac108_multi_write(reg, value_w, ac10x);
printk("Write 0x%02x to REG:0x%02x\n", value_w, reg);
} else {
reg = (val >> 8) & 0xFF;
num = val & 0xff;
printk("\nRead: start REG:0x%02x,count:0x%02x\n", reg, num);
do {
int k;
memset(value_r, 0, sizeof value_r);
for (k = 0; k < ac10x->codec_cnt; k++) {
ac10x_read(reg, &value_r[k], ac10x->i2cmap[k]);
}
if (ac10x->codec_cnt >= 2) {
printk("REG[0x%02x]: 0x%02x 0x%02x", reg, value_r[0], value_r[1]);
} else {
printk("REG[0x%02x]: 0x%02x", reg, value_r[0]);
}
reg++;
if ((++i == num) || (i % 4 == 0)) {
printk("\n");
}
} while (i < num);
}
return count;
}
static ssize_t ac108_show(struct device *dev, struct device_attribute *attr, char *buf) {
#if 1
printk("echo flag|reg|val > ac108\n");
printk("eg read star addres=0x06,count 0x10:echo 0610 >ac108\n");
printk("eg write value:0xfe to address:0x06 :echo 106fe > ac108\n");
return 0;
#else
return snprintf(buf, PAGE_SIZE,"echo flag|reg|val > ac108\n"
"eg read star addres=0x06,count 0x10:echo 0610 >ac108\n"
"eg write value:0xfe to address:0x06 :echo 106fe > ac108\n");
#endif
}
static DEVICE_ATTR(ac108, 0644, ac108_show, ac108_store);
static struct attribute *ac108_debug_attrs[] = {
&dev_attr_ac108.attr,
NULL,
};
static struct attribute_group ac108_debug_attr_group = {
.name = "ac108_debug",
.attrs = ac108_debug_attrs,
};
static const struct regmap_config ac108_regmap = {
.reg_bits = 8,
.val_bits = 8,
.reg_stride = 1,
.max_register = 0xDF,
.cache_type = REGCACHE_RBTREE,
};
static int ac108_i2c_probe(struct i2c_client *i2c, const struct i2c_device_id *i2c_id) {
struct device_node *np = i2c->dev.of_node;
unsigned int val = 0;
int ret = 0, index;
if (ac10x == NULL) {
ac10x = devm_kzalloc(&i2c->dev, sizeof(struct ac10x_priv), GFP_KERNEL);
if (ac10x == NULL) {
dev_err(&i2c->dev, "Unable to allocate ac10x private data\n");
return -ENOMEM;
}
}
index = (int)i2c_id->driver_data;
if (index == AC101_I2C_ID) {
ac10x->i2c101 = i2c;
i2c_set_clientdata(i2c, ac10x);
ret = ac101_probe(i2c, i2c_id);
if (ret) {
return ret;
}
goto __ret;
}
ret = of_property_read_u32(np, "data-protocol", &val);
if (ret) {
pr_err("Please set data-protocol.\n");
return -EINVAL;
}
ac10x->data_protocol = val;
if (of_property_read_u32(np, "tdm-chips-count", &val)) val = 1;
ac10x->tdm_chips_cnt = val;
pr_err(" ac10x i2c_id number: %d\n", index);
pr_err(" ac10x data protocol: %d\n", ac10x->data_protocol);
ac10x->i2c[index] = i2c;
ac10x->i2cmap[index] = devm_regmap_init_i2c(i2c, &ac108_regmap);
if (IS_ERR(ac10x->i2cmap[index])) {
ret = PTR_ERR(ac10x->i2cmap[index]);
dev_err(&i2c->dev, "Fail to initialize i2cmap%d I/O: %d\n", index, ret);
return ret;
}
/*
* Writing this register with 0x12
* will resets all register to their default state.
*/
ret = regmap_write(ac10x->i2cmap[index], CHIP_RST, CHIP_RST_VAL);
msleep(1);
ac10x->codec_cnt++;
pr_err(" ac10x codec count : %d\n", ac10x->codec_cnt);
ret = sysfs_create_group(&i2c->dev.kobj, &ac108_debug_attr_group);
if (ret) {
pr_err("failed to create attr group\n");
}
__ret:
/* It's time to bind codec to i2c[_MASTER_INDEX] when all i2c are ready */
if ((ac10x->codec_cnt != 0 && ac10x->tdm_chips_cnt < 2)
|| (ac10x->i2c[0] && ac10x->i2c[1] && ac10x->i2c101)) {
if (! ac10x->i2c101 || _MASTER_MULTI_CODEC == _MASTER_AC108) {
asoc_simple_card_register_set_clock(ac108_set_clock);
}
/* no playback stream */
if (! ac10x->i2c101) {
memset(&ac108_dai[_MASTER_INDEX]->playback, '\0', sizeof ac108_dai[_MASTER_INDEX]->playback);
}
ret = snd_soc_register_codec(&ac10x->i2c[_MASTER_INDEX]->dev, &ac10x_soc_codec_driver,
ac108_dai[_MASTER_INDEX], 1);
if (ret < 0) {
dev_err(&i2c->dev, "Failed to register ac10x codec: %d\n", ret);
}
}
return ret;
}
static int ac108_i2c_remove(struct i2c_client *i2c) {
if (ac10x->i2c101) {
ac101_remove(ac10x->i2c101);
}
if (ac10x->codec != NULL) {
snd_soc_unregister_codec(&ac10x->i2c[_MASTER_INDEX]->dev);
ac10x->codec = NULL;
}
return 0;
}
static const struct i2c_device_id ac108_i2c_id[] = {
{ "ac108_0", 0 },
{ "ac108_1", 1 },
{ "ac108_2", 2 },
{ "ac108_3", 3 },
{ "ac101", AC101_I2C_ID },
{ }
};
MODULE_DEVICE_TABLE(i2c, ac108_i2c_id);
static const struct of_device_id ac108_of_match[] = {
{ .compatible = "x-power,ac108_0", },
{ .compatible = "x-power,ac108_1", },
{ .compatible = "x-power,ac108_2", },
{ .compatible = "x-power,ac108_3", },
{ .compatible = "x-power,ac101", },
{ }
};
MODULE_DEVICE_TABLE(of, ac108_of_match);
static struct i2c_driver ac108_i2c_driver = {
.driver = {
.name = "ac10x-codec",
.of_match_table = ac108_of_match,
},
.probe = ac108_i2c_probe,
.remove = ac108_i2c_remove,
.id_table = ac108_i2c_id,
};
module_i2c_driver(ac108_i2c_driver);
MODULE_DESCRIPTION("ASoC AC108 driver");
MODULE_AUTHOR("Baozhu Zuo<zuobaozhu@gmail.com>");
MODULE_LICENSE("GPL");